{-# OPTIONS --without-K --safe #-}
module Function.Related.TypeIsomorphisms where
open import Algebra
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Product as Prod hiding (swap)
open import Data.Product.Function.NonDependent.Propositional
open import Data.Sum as Sum
open import Data.Sum.Properties using (swap-involutive)
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Data.Unit using (⊤)
open import Level using (Level; Lift; lower; 0ℓ; suc)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Eq using (_⇔_; Equivalence)
open import Function.Inverse as Inv using (_↔_; Inverse; inverse)
open import Function.Related
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)
open import Relation.Nullary using (Dec; ¬_; yes; no)
open import Relation.Nullary.Decidable using (True)
Σ-assoc : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : (a : A) → B a → Set c} →
Σ (Σ A B) (uncurry C) ↔ Σ A (λ a → Σ (B a) (C a))
Σ-assoc = inverse (λ where ((a , b) , c) → (a , b , c))
(λ where (a , b , c) → ((a , b) , c))
(λ _ → P.refl) (λ _ → P.refl)
×-comm : ∀ {a b} (A : Set a) (B : Set b) → (A × B) ↔ (B × A)
×-comm _ _ = inverse Prod.swap Prod.swap (λ _ → P.refl) λ _ → P.refl
×-identityˡ : ∀ ℓ → LeftIdentity _↔_ (Lift ℓ ⊤) _×_
×-identityˡ _ _ = inverse proj₂ -,_ (λ _ → P.refl) (λ _ → P.refl)
×-identityʳ : ∀ ℓ → RightIdentity _↔_ (Lift ℓ ⊤) _×_
×-identityʳ _ _ = inverse proj₁ (_, _) (λ _ → P.refl) (λ _ → P.refl)
×-identity : ∀ ℓ → Identity _↔_ (Lift ℓ ⊤) _×_
×-identity ℓ = ×-identityˡ ℓ , ×-identityʳ ℓ
×-zeroˡ : ∀ ℓ → LeftZero _↔_ (Lift ℓ ⊥) _×_
×-zeroˡ ℓ A = inverse proj₁ (⊥-elim ∘′ lower)
(⊥-elim ∘ lower ∘ proj₁) (⊥-elim ∘ lower)
×-zeroʳ : ∀ ℓ → RightZero _↔_ (Lift ℓ ⊥) _×_
×-zeroʳ ℓ A = inverse proj₂ (⊥-elim ∘′ lower)
(⊥-elim ∘ lower ∘ proj₂) (⊥-elim ∘ lower)
×-zero : ∀ ℓ → Zero _↔_ (Lift ℓ ⊥) _×_
×-zero ℓ = ×-zeroˡ ℓ , ×-zeroʳ ℓ
⊎-assoc : ∀ ℓ → Associative {ℓ = ℓ} _↔_ _⊎_
⊎-assoc ℓ _ _ _ = inverse
[ [ inj₁ , inj₂ ∘′ inj₁ ]′ , inj₂ ∘′ inj₂ ]′
[ inj₁ ∘′ inj₁ , [ inj₁ ∘′ inj₂ , inj₂ ]′ ]′
[ [ (λ _ → P.refl) , (λ _ → P.refl) ] , (λ _ → P.refl) ]
[ (λ _ → P.refl) , [ (λ _ → P.refl) , (λ _ → P.refl) ] ]
⊎-comm : ∀ {a b} (A : Set a) (B : Set b) → (A ⊎ B) ↔ (B ⊎ A)
⊎-comm _ _ = inverse swap swap swap-involutive swap-involutive
⊎-identityˡ : ∀ ℓ → LeftIdentity _↔_ (Lift ℓ ⊥) _⊎_
⊎-identityˡ _ _ = inverse [ (λ ()) , id ]′ inj₂
[ (λ ()) , (λ _ → P.refl) ] (λ _ → P.refl)
⊎-identityʳ : ∀ ℓ → RightIdentity _↔_ (Lift ℓ ⊥) _⊎_
⊎-identityʳ _ _ = inverse [ id , (λ ()) ]′ inj₁
[ (λ _ → P.refl) , (λ ()) ] (λ _ → P.refl)
⊎-identity : ∀ ℓ → Identity _↔_ (Lift ℓ ⊥) _⊎_
⊎-identity ℓ = ⊎-identityˡ ℓ , ⊎-identityʳ ℓ
×-distribˡ-⊎ : ∀ ℓ → _DistributesOverˡ_ {ℓ = ℓ} _↔_ _×_ _⊎_
×-distribˡ-⊎ ℓ _ _ _ = inverse
(uncurry λ x → [ inj₁ ∘′ (x ,_) , inj₂ ∘′ (x ,_) ]′)
[ Prod.map₂ inj₁ , Prod.map₂ inj₂ ]′
(uncurry λ _ → [ (λ _ → P.refl) , (λ _ → P.refl) ])
[ (λ _ → P.refl) , (λ _ → P.refl) ]
×-distribʳ-⊎ : ∀ ℓ → _DistributesOverʳ_ {ℓ = ℓ} _↔_ _×_ _⊎_
×-distribʳ-⊎ ℓ _ _ _ = inverse
(uncurry [ curry inj₁ , curry inj₂ ]′)
[ Prod.map₁ inj₁ , Prod.map₁ inj₂ ]′
(uncurry [ (λ _ _ → P.refl) , (λ _ _ → P.refl) ])
[ (λ _ → P.refl) , (λ _ → P.refl) ]
×-distrib-⊎ : ∀ ℓ → _DistributesOver_ {ℓ = ℓ} _↔_ _×_ _⊎_
×-distrib-⊎ ℓ = ×-distribˡ-⊎ ℓ , ×-distribʳ-⊎ ℓ
×-isMagma : ∀ k ℓ → IsMagma {Level.suc ℓ} (Related ⌊ k ⌋) _×_
×-isMagma k ℓ = record
{ isEquivalence = SK-isEquivalence k ℓ
; ∙-cong = _×-cong_
}
×-magma : Symmetric-kind → (ℓ : Level) → Magma _ _
×-magma k ℓ = record
{ isMagma = ×-isMagma k ℓ
}
×-isSemigroup : ∀ k ℓ → IsSemigroup {Level.suc ℓ} (Related ⌊ k ⌋) _×_
×-isSemigroup k ℓ = record
{ isMagma = ×-isMagma k ℓ
; assoc = λ _ _ _ → ↔⇒ Σ-assoc
}
×-semigroup : Symmetric-kind → (ℓ : Level) → Semigroup _ _
×-semigroup k ℓ = record
{ isSemigroup = ×-isSemigroup k ℓ
}
×-isMonoid : ∀ k ℓ → IsMonoid (Related ⌊ k ⌋) _×_ (Lift ℓ ⊤)
×-isMonoid k ℓ = record
{ isSemigroup = ×-isSemigroup k ℓ
; identity = (↔⇒ ∘ ×-identityˡ ℓ) , (↔⇒ ∘ ×-identityʳ ℓ)
}
×-monoid : Symmetric-kind → (ℓ : Level) → Monoid _ _
×-monoid k ℓ = record
{ isMonoid = ×-isMonoid k ℓ
}
×-isCommutativeMonoid : ∀ k ℓ → IsCommutativeMonoid (Related ⌊ k ⌋) _×_ (Lift ℓ ⊤)
×-isCommutativeMonoid k ℓ = record
{ isSemigroup = ×-isSemigroup k ℓ
; identityˡ = ↔⇒ ∘ ×-identityˡ ℓ
; comm = λ _ _ → ↔⇒ (×-comm _ _)
}
×-commutativeMonoid : Symmetric-kind → (ℓ : Level) → CommutativeMonoid _ _
×-commutativeMonoid k ℓ = record
{ isCommutativeMonoid = ×-isCommutativeMonoid k ℓ
}
⊎-isMagma : ∀ k ℓ → IsMagma {Level.suc ℓ} (Related ⌊ k ⌋) _⊎_
⊎-isMagma k ℓ = record
{ isEquivalence = SK-isEquivalence k ℓ
; ∙-cong = _⊎-cong_
}
⊎-magma : Symmetric-kind → (ℓ : Level) → Magma _ _
⊎-magma k ℓ = record
{ isMagma = ⊎-isMagma k ℓ
}
⊎-isSemigroup : ∀ k ℓ → IsSemigroup {Level.suc ℓ} (Related ⌊ k ⌋) _⊎_
⊎-isSemigroup k ℓ = record
{ isMagma = ⊎-isMagma k ℓ
; assoc = λ A B C → ↔⇒ (⊎-assoc ℓ A B C)
}
⊎-semigroup : Symmetric-kind → (ℓ : Level) → Semigroup _ _
⊎-semigroup k ℓ = record
{ isSemigroup = ⊎-isSemigroup k ℓ
}
⊎-isMonoid : ∀ k ℓ → IsMonoid (Related ⌊ k ⌋) _⊎_ (Lift ℓ ⊥)
⊎-isMonoid k ℓ = record
{ isSemigroup = ⊎-isSemigroup k ℓ
; identity = (↔⇒ ∘ ⊎-identityˡ ℓ) , (↔⇒ ∘ ⊎-identityʳ ℓ)
}
⊎-monoid : Symmetric-kind → (ℓ : Level) → Monoid _ _
⊎-monoid k ℓ = record
{ isMonoid = ⊎-isMonoid k ℓ
}
⊎-isCommutativeMonoid : ∀ k ℓ → IsCommutativeMonoid (Related ⌊ k ⌋) _⊎_ (Lift ℓ ⊥)
⊎-isCommutativeMonoid k ℓ = record
{ isSemigroup = ⊎-isSemigroup k ℓ
; identityˡ = ↔⇒ ∘ ⊎-identityˡ ℓ
; comm = λ _ _ → ↔⇒ (⊎-comm _ _)
}
⊎-commutativeMonoid : Symmetric-kind → (ℓ : Level) →
CommutativeMonoid _ _
⊎-commutativeMonoid k ℓ = record
{ isCommutativeMonoid = ⊎-isCommutativeMonoid k ℓ
}
×-⊎-isCommutativeSemiring : ∀ k ℓ →
IsCommutativeSemiring (Related ⌊ k ⌋) _⊎_ _×_ (Lift ℓ ⊥) (Lift ℓ ⊤)
×-⊎-isCommutativeSemiring k ℓ = record
{ +-isCommutativeMonoid = ⊎-isCommutativeMonoid k ℓ
; *-isCommutativeMonoid = ×-isCommutativeMonoid k ℓ
; distribʳ = λ A B C → ↔⇒ (×-distribʳ-⊎ ℓ A B C)
; zeroˡ = ↔⇒ ∘ ×-zeroˡ ℓ
}
×-⊎-commutativeSemiring : Symmetric-kind → (ℓ : Level) →
CommutativeSemiring (Level.suc ℓ) ℓ
×-⊎-commutativeSemiring k ℓ = record
{ isCommutativeSemiring = ×-⊎-isCommutativeSemiring k ℓ
}
ΠΠ↔ΠΠ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) →
((x : A) (y : B) → P x y) ↔ ((y : B) (x : A) → P x y)
ΠΠ↔ΠΠ _ = inverse flip flip (λ _ → P.refl) (λ _ → P.refl)
∃∃↔∃∃ : ∀ {a b p} {A : Set a} {B : Set b} (P : A → B → Set p) →
(∃₂ λ x y → P x y) ↔ (∃₂ λ y x → P x y)
∃∃↔∃∃ P = inverse to from (λ _ → P.refl) (λ _ → P.refl)
where
to : (∃₂ λ x y → P x y) → (∃₂ λ y x → P x y)
to (x , y , Pxy) = (y , x , Pxy)
from : (∃₂ λ y x → P x y) → (∃₂ λ x y → P x y)
from (y , x , Pxy) = (x , y , Pxy)
Π↔Π : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) ↔ ({x : A} → B x)
Π↔Π = inverse (λ f {x} → f x) (λ f x → f) (λ _ → P.refl) (λ _ → P.refl)
_→-cong-⇔_ :
∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ⇔ B → C ⇔ D → (A → C) ⇔ (B → D)
A⇔B →-cong-⇔ C⇔D = Eq.equivalence
(λ f x → Equivalence.to C⇔D ⟨$⟩ f (Equivalence.from A⇔B ⟨$⟩ x))
(λ f x → Equivalence.from C⇔D ⟨$⟩ f (Equivalence.to A⇔B ⟨$⟩ x))
→-cong :
∀ {a b c d} →
Extensionality a c → Extensionality b d →
∀ {k} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A → C) ∼[ ⌊ k ⌋ ] (B → D)
→-cong extAC extBD {equivalence} A⇔B C⇔D = A⇔B →-cong-⇔ C⇔D
→-cong extAC extBD {bijection} A↔B C↔D = record
{ to = Equivalence.to A→C⇔B→D
; from = Equivalence.from A→C⇔B→D
; inverse-of = record
{ left-inverse-of = λ f → extAC λ x → begin
Inverse.from C↔D ⟨$⟩ (Inverse.to C↔D ⟨$⟩
f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x))) ≡⟨ Inverse.left-inverse-of C↔D _ ⟩
f (Inverse.from A↔B ⟨$⟩ (Inverse.to A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.left-inverse-of A↔B x ⟩
f x ∎
; right-inverse-of = λ f → extBD λ x → begin
Inverse.to C↔D ⟨$⟩ (Inverse.from C↔D ⟨$⟩
f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x))) ≡⟨ Inverse.right-inverse-of C↔D _ ⟩
f (Inverse.to A↔B ⟨$⟩ (Inverse.from A↔B ⟨$⟩ x)) ≡⟨ P.cong f $ Inverse.right-inverse-of A↔B x ⟩
f x ∎
}
}
where
open P.≡-Reasoning
A→C⇔B→D = ↔⇒ A↔B →-cong-⇔ ↔⇒ C↔D
¬-cong-⇔ : ∀ {a b} {A : Set a} {B : Set b} →
A ⇔ B → (¬ A) ⇔ (¬ B)
¬-cong-⇔ A⇔B = A⇔B →-cong-⇔ (⊥ ∎)
where open EquationalReasoning
¬-cong : ∀ {a b} → Extensionality a 0ℓ → Extensionality b 0ℓ →
∀ {k} {A : Set a} {B : Set b} →
A ∼[ ⌊ k ⌋ ] B → (¬ A) ∼[ ⌊ k ⌋ ] (¬ B)
¬-cong extA extB A≈B = →-cong extA extB A≈B (⊥ ∎)
where open EquationalReasoning
Related-cong :
∀ {k a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
A ∼[ ⌊ k ⌋ ] B → C ∼[ ⌊ k ⌋ ] D → (A ∼[ ⌊ k ⌋ ] C) ⇔ (B ∼[ ⌊ k ⌋ ] D)
Related-cong {A = A} {B} {C} {D} A≈B C≈D =
Eq.equivalence (λ A≈C → B ∼⟨ SK-sym A≈B ⟩
A ∼⟨ A≈C ⟩
C ∼⟨ C≈D ⟩
D ∎)
(λ B≈D → A ∼⟨ A≈B ⟩
B ∼⟨ B≈D ⟩
D ∼⟨ SK-sym C≈D ⟩
C ∎)
where open EquationalReasoning
True↔ : ∀ {p} {P : Set p}
(dec : Dec P) → ((p₁ p₂ : P) → p₁ ≡ p₂) → True dec ↔ P
True↔ (yes p) irr = inverse (λ _ → p) (λ _ → _) (λ _ → P.refl) (irr p)
True↔ (no ¬p) _ = inverse (λ()) ¬p (λ()) (⊥-elim ∘ ¬p)
Σ-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : A → Set b} {p₁ p₂ : Σ A B} →
(∃ λ (p : proj₁ p₁ ≡ proj₁ p₂) →
P.subst B p (proj₂ p₁) ≡ proj₂ p₂) ↔
(p₁ ≡ p₂)
Σ-≡,≡↔≡ {A = A} {B} = inverse to from left-inverse-of right-inverse-of
where
to : {p₁ p₂ : Σ A B} →
Σ (proj₁ p₁ ≡ proj₁ p₂)
(λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂) →
p₁ ≡ p₂
to (P.refl , P.refl) = P.refl
from : {p₁ p₂ : Σ A B} →
p₁ ≡ p₂ →
Σ (proj₁ p₁ ≡ proj₁ p₂)
(λ p → P.subst B p (proj₂ p₁) ≡ proj₂ p₂)
from P.refl = P.refl , P.refl
left-inverse-of : {p₁ p₂ : Σ A B}
(p : Σ (proj₁ p₁ ≡ proj₁ p₂)
(λ x → P.subst B x (proj₂ p₁) ≡ proj₂ p₂)) →
from (to p) ≡ p
left-inverse-of (P.refl , P.refl) = P.refl
right-inverse-of : {p₁ p₂ : Σ A B} (p : p₁ ≡ p₂) → to (from p) ≡ p
right-inverse-of P.refl = P.refl
×-≡,≡↔≡ : ∀ {a b} {A : Set a} {B : Set b} {p₁ p₂ : A × B} →
(proj₁ p₁ ≡ proj₁ p₂ × proj₂ p₁ ≡ proj₂ p₂) ↔ p₁ ≡ p₂
×-≡,≡↔≡ {A = A} {B} = inverse to from left-inverse-of right-inverse-of
where
to : {p₁ p₂ : A × B} →
(proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂) → p₁ ≡ p₂
to (P.refl , P.refl) = P.refl
from : {p₁ p₂ : A × B} → p₁ ≡ p₂ →
(proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂)
from P.refl = P.refl , P.refl
left-inverse-of : {p₁ p₂ : A × B} →
(p : (proj₁ p₁ ≡ proj₁ p₂) × (proj₂ p₁ ≡ proj₂ p₂)) →
from (to p) ≡ p
left-inverse-of (P.refl , P.refl) = P.refl
right-inverse-of : {p₁ p₂ : A × B} (p : p₁ ≡ p₂) → to (from p) ≡ p
right-inverse-of P.refl = P.refl
×-≡×≡↔≡,≡ : ∀ {a b} {A : Set a} {B : Set b} {x y} (p : A × B) →
(x ≡ proj₁ p × y ≡ proj₂ p) ↔ (x , y) ≡ p
×-≡×≡↔≡,≡ {x = x} {y} p = inverse to from from∘to to∘from
where
to : (x ≡ proj₁ p × y ≡ proj₂ p) → (x , y) ≡ p
to = uncurry $ P.cong₂ _,_
from : (x , y) ≡ p → (x ≡ proj₁ p × y ≡ proj₂ p)
from = < P.cong proj₁ , P.cong proj₂ >
from∘to : ∀ v → from (to v) ≡ v
from∘to (P.refl , P.refl) = P.refl
to∘from : ∀ v → to (from v) ≡ v
to∘from P.refl = P.refl
×-CommutativeMonoid = ×-commutativeMonoid
{-# WARNING_ON_USAGE ×-CommutativeMonoid
"Warning: ×-CommutativeMonoid was deprecated in v0.17.
Please use ×-commutativeMonoid instead."
#-}
⊎-CommutativeMonoid = ⊎-commutativeMonoid
{-# WARNING_ON_USAGE ⊎-CommutativeMonoid
"Warning: ⊎-CommutativeMonoid was deprecated in v0.17.
Please use ⊎-commutativeMonoid instead."
#-}
×⊎-CommutativeSemiring = ×-⊎-commutativeSemiring
{-# WARNING_ON_USAGE ×⊎-CommutativeSemiring
"Warning: ×⊎-CommutativeSemiring was deprecated in v0.17.
Please use ×-⊎-commutativeSemiring instead."
#-}