------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of sums (disjoint unions)
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Sum.Properties where

open import Data.Sum
open import Function
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map′)

module _ {a b} {A : Set a} {B : Set b} where

  inj₁-injective :  {x y}  (A  B  inj₁ x)  inj₁ y  x  y
  inj₁-injective refl = refl

  inj₂-injective :  {x y}  (A  B  inj₂ x)  inj₂ y  x  y
  inj₂-injective refl = refl

  module _ (dec₁ : Decidable _≡_) (dec₂ : Decidable _≡_) where

    ≡-dec : Decidable {A = A  B} _≡_
    ≡-dec (inj₁ x) (inj₁ y) = map′ (cong inj₁) inj₁-injective (dec₁ x y)
    ≡-dec (inj₁ x) (inj₂ y) = no λ()
    ≡-dec (inj₂ x) (inj₁ y) = no λ()
    ≡-dec (inj₂ x) (inj₂ y) = map′ (cong inj₂) inj₂-injective (dec₂ x y)

  swap-involutive : swap {A = A} {B = B}  swap  id
  swap-involutive = [  _  refl) ,  _  refl) ]