{-# OPTIONS --postfix-projections #-}
{-# OPTIONS --rewriting #-}
open import Library
module SimpleTypes (Base : Set) (B⦅_⦆ : Base → Set) where
data Ty : Set where
base : (b : Base) → Ty
_⇒_ _×̂_ : (U T : Ty) → Ty
infixr 4 _⇒_
infixr 6 _×̂_
data Cxt : Set where
ε : Cxt
_▷_ : (Γ : Cxt) (U : Ty) → Cxt
data _≤_ : (Γ Δ : Cxt) → Set where
id≤ : ∀{Γ} → Γ ≤ Γ
weak : ∀{Γ Δ U} (τ : Γ ≤ Δ) → (Γ ▷ U) ≤ Δ
lift : ∀{Γ Δ U} (τ : Γ ≤ Δ) → (Γ ▷ U) ≤ (Δ ▷ U)
_∙_ : ∀{Γ Δ Φ} (τ : Δ ≤ Γ) (τ′ : Φ ≤ Δ) → Φ ≤ Γ
τ ∙ id≤ = τ
τ ∙ weak τ′ = weak (τ ∙ τ′)
id≤ ∙ lift τ′ = lift τ′
weak τ ∙ lift τ′ = weak (τ ∙ τ′)
lift τ ∙ lift τ′ = lift (τ ∙ τ′)
≤ε : ∀ Γ → Γ ≤ ε
≤ε ε = id≤
≤ε (Γ ▷ U) = weak (≤ε Γ)
T⦅_⦆ : Ty → Set
T⦅ base b ⦆ = B⦅ b ⦆
T⦅ U ⇒ T ⦆ = T⦅ U ⦆ → T⦅ T ⦆
T⦅ U ×̂ T ⦆ = T⦅ U ⦆ × T⦅ T ⦆
C⦅_⦆ : Cxt → Set
C⦅ ε ⦆ = ⊤
C⦅ Γ ▷ U ⦆ = C⦅ Γ ⦆ × T⦅ U ⦆
Fun : (Γ : Cxt) (T : Ty) → Set
Fun Γ T = C⦅ Γ ⦆ → T⦅ T ⦆
CFun : (Δ Γ : Cxt) → Set
CFun Δ Γ = C⦅ Δ ⦆ → C⦅ Γ ⦆
R⦅_⦆ : ∀{Γ Δ} (τ : Δ ≤ Γ) → C⦅ Δ ⦆ → C⦅ Γ ⦆
R⦅ id≤ ⦆ = id
R⦅ weak τ ⦆ = R⦅ τ ⦆ ∘ proj₁
R⦅ lift τ ⦆ = R⦅ τ ⦆ ×̇′ id
ar-comp : ∀{Γ Δ Φ} (τ : Δ ≤ Γ) (τ′ : Φ ≤ Δ) → R⦅ τ ∙ τ′ ⦆ ≡ R⦅ τ ⦆ ∘′ R⦅ τ′ ⦆
ar-comp τ id≤ = refl
ar-comp τ (weak τ′) rewrite ar-comp τ τ′ = refl
ar-comp id≤ (lift τ′) = refl
ar-comp (weak τ) (lift τ′) rewrite ar-comp τ τ′ = refl
ar-comp (lift τ) (lift τ′) rewrite ar-comp τ τ′ = refl
{-# REWRITE ar-comp #-}
KPred : (A : Set) → Set₁
KPred A = (Γ : Cxt) (f : C⦅ Γ ⦆ → A) → Set
Mon : ∀{A} → KPred A → Set
Mon {A} P = ∀{Γ Δ : Cxt} (τ : Δ ≤ Γ) {f : C⦅ Γ ⦆ → A}
→ (⟦f⟧ : P Γ f)
→ P Δ (f ∘′ R⦅ τ ⦆)