------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a setoid
------------------------------------------------------------------------
-- Example use:
-- n*0≡0 : ∀ n → n * 0 ≡ 0
-- n*0≡0 zero = refl
-- n*0≡0 (suc n) = begin
-- suc n * 0 ≈⟨ refl ⟩
-- n * 0 + 0 ≈⟨ ... ⟩
-- n * 0 ≈⟨ n*0≡0 n ⟩
-- 0 ∎
-- Module `≡-Reasoning` in `Relation.Binary.PropositionalEquality`
-- is recommended for equational reasoning when the underlying equality is
-- `_≡_`.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Setoid {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
------------------------------------------------------------------------
-- Publicly re-export partial setoid contents
open import Relation.Binary.Reasoning.PartialSetoid (partialSetoid) public
open import Relation.Binary.Reasoning.Base.Single _≈_ refl trans using (_∎) public