An infinitary treatment of full μ -calculus

Bahareh Afshari, Gerhard Jäger, Graham E. Leigh

Department of Computer Science and Engineering, University of Gothenburg

Logic & Types Annual Meeting Aspenäs, September 2019 *Syntax of* L_{μ} : $\perp \mid \top \mid p \mid \overline{p} \mid \varphi \land \psi \mid \varphi \lor \psi \mid \langle \mathfrak{a} \rangle \varphi \mid [\mathfrak{a}] \varphi \mid x \mid \mu x \varphi \mid v x \varphi$ where $p \in \text{Prop}$, $\mathfrak{a} \in \text{Act}$, and $x \in \text{Var}$

Kozen's axiomatisation

- System K: PL + $\frac{\varphi}{[\mathfrak{a}]\varphi}$ + $[\mathfrak{a}](\varphi \to \psi) \to [\mathfrak{a}]\varphi \to [\mathfrak{a}]\psi$
- $\varphi(\mu \mathbf{x} \varphi(\mathbf{x})) \rightarrow \mu \mathbf{x} \varphi(\mathbf{x})$
- $\varphi(\psi) \to \psi \vdash \mu \mathbf{x} \varphi(\mathbf{x}) \to \psi$

Theorem (Kozen 1983; Walukiewicz 2000)

The proof system Koz is sound and complete for modal μ -calculus.

Techniques: automata on infinite trees, games and tableaux constructions

Converse modalities:

- for each $\mathfrak{a}\in Act$ we have $\bar{\mathfrak{a}}\in Act$ and $\bar{\bar{\mathfrak{a}}}=\mathfrak{a}$
- Symmetric frames: $uR_{\mathfrak{a}}v$ iff $vR_{\tilde{\mathfrak{a}}}u$
- So axiomatically, $\varphi \to [\bar{\mathfrak{a}}]\langle \mathfrak{a} \rangle \varphi$ for all every formula φ and $\mathfrak{a} \in Act$

Comparisions

- FMP fails: take e.g. $\nu x(\langle \mathfrak{a} \rangle x \land \mu y[\bar{\mathfrak{a}}]y))$
- Satisfiability is decidable (Vardi 1998)
- S Koz + *p* → $[\bar{\mathfrak{a}}]\langle \mathfrak{a} \rangle p$ complete for the full *µ*-calculus?

Axiomatisation for full μ -calculus

• Nested sequent: $\varphi_1, \varphi_2, \ldots, \varphi_k, \mathfrak{a}_1\{\Gamma_1\}, \mathfrak{a}_2\{\Gamma_2\}, \ldots, \mathfrak{a}_l\{\Gamma_l\}$

Ax2: $\Gamma[p, \bar{p}]$

• Intended reading of $\mathfrak{a}\{\Gamma\}$ is $i(\mathfrak{a}\{\Gamma\}) = [\mathfrak{a}] \bigvee_{\gamma \in \Gamma} i(\gamma)$.

•
$$L_{\mu}(\omega_1) = L_{\mu} \cup \{ v^{\alpha} \mathbf{x} \varphi : \omega_1 > \alpha > 0 \}$$

• $v \mathbf{x} \varphi = v^{\omega_1} \mathbf{x} \varphi$

$$\frac{\Gamma[\varphi,\psi]}{\Gamma[\varphi\vee\psi]} \vee \qquad \frac{\Gamma[\varphi]}{\Gamma[\varphi\wedge\psi]} \wedge \qquad \frac{\Gamma[\varphi(\mu x\varphi)]}{\Gamma[\mu x\varphi]} \mu$$

$$\frac{\Gamma[\mathfrak{a}\{\varphi\}]}{\Gamma[\mathfrak{a}]\varphi]}[\mathfrak{a}] \qquad \frac{\Gamma[\mathfrak{a}\{\Delta,\varphi\}]}{\Gamma[\mathfrak{a}\{\Delta\},\langle\mathfrak{a}\rangle\varphi]}\langle\mathfrak{a}\rangle \qquad \frac{\Gamma[\mathfrak{a}\{\Delta\},\varphi]}{\Gamma[\mathfrak{a}\{\Delta,\langle\bar{\mathfrak{a}}\rangle\varphi]} \operatorname{con}$$

$$\frac{\Gamma[\varphi(\nu^{\beta} x\varphi)]}{\Gamma[\nu^{\alpha} x\varphi]} \operatorname{for all} \beta < \alpha}{\Gamma[\nu^{\alpha} x\varphi]} \nu_{\alpha}$$
Figure: Axioms and rules of $K_{\mu}(\omega_{1}) + \operatorname{con}$

Saturation

Fix $\rho \in L_{\mu}$, and let $\Gamma \& \Delta$ be nested sequents.

Δ is a saturation of Γ if:

• Δ extends Γ ;

2 For all formulæ $\varphi, \psi \in L_{\mu}(\omega_1), \mathfrak{a} \in Act$ and nodes u, v in *tree*(Δ)

a)
$$\varphi \land \psi \in u \Longrightarrow \varphi \in u \text{ or } \psi \in u$$

b)
$$\varphi \lor \psi \in u \Longrightarrow \varphi \in u$$
 and $\psi \in u$

c)
$$[\mathfrak{a}]\varphi \in u \Longrightarrow \varphi \in v$$
 for some \mathfrak{a} -successor v of u

d) if v is a a-successor of $u \Longrightarrow \{\varphi : \langle \mathfrak{a} \rangle \varphi \in u\} \subseteq v \& \{\varphi : \langle \overline{\mathfrak{a}} \rangle \varphi \in v\} \subseteq u$

e)
$$\mu \mathbf{x} \varphi \in u \Longrightarrow \varphi(\mu \mathbf{x} \varphi) \in u$$

f)
$$v^{\alpha} \mathbf{x} \varphi \in u \Longrightarrow \varphi(v^{\beta} \mathbf{x} \varphi) \in u$$
 for some $\beta < \alpha$.

Lemma (Saturation Lemma)

If $\nvDash \Gamma$ there is a tree t_{∞} extending Γ with the following properties

- (i) t_{∞} satisfies all requirements of saturation i.e. a-f.
- (ii) it is not the case that $p, \bar{p} \in u$ for any node u in t_{∞}

Canonical model

Let $K = (W, \{R_{\mathfrak{a}}\}_{\mathfrak{a} \in \mathsf{Act}}, \lambda)$ be given by

• $W = \{u : u \text{ is a node in } t_{\infty}\}$

•
$$uR_{\mathfrak{a}}v$$
 iff $\{\varphi: \langle \mathfrak{a} \rangle \varphi \in u\} \subseteq v \& \{\varphi: \langle \overline{\mathfrak{a}} \rangle \varphi \in v\} \subseteq u$

•
$$\lambda(p) = \{u : p \notin u\}$$

Remark: Nodes in t_{∞} maybe labelled with an infinite set of formulae and be infinite branching. It is possible to finitise both.

Lemma (Truth Lemma)

For $u \in W$ *and* $L_{\mu}(\omega_1)$ *-formula* φ

$$\varphi \in u \quad \Rightarrow \quad (K, u) \not\models \varphi$$

Theorem (Completeness)

The axiomatisation $K_{\mu}(\omega_1)$ + con is complete for the full modal μ -calculus.

$$\frac{\Gamma[\varphi(\nu^{\beta} \mathbf{x} \varphi)] \quad \text{for all } \beta < \omega_{1}}{\Gamma[\nu \mathbf{x} \varphi]} v_{\omega_{1}} \qquad \stackrel{?}{\rightsquigarrow} \qquad \frac{\Gamma[\varphi(\nu^{n} \mathbf{x} \varphi)] \quad \text{for all } n < \omega}{\Gamma[\nu \mathbf{x} \varphi]} v_{\omega}$$

Theorem

- $K_{\mu}(\omega)$ is sound for the modal μ -calculus without appealing to FMP;
- $K_{\mu}(\omega^{\omega})$ + con is sound for the full μ -calculus;
- $K_{\mu}(\kappa)$ + con is unsound for any $\kappa < \omega^{\omega}$ over symmetric frames.

For a formula $\rho \in L_{\mu}$ the $\mathbb{SC}(\rho)$ is defined inductively:

- $\varrho \in \mathbb{SC}(\varrho)$
- If $\varphi \land \psi \in \mathbb{SC}(\varrho)$ or $\varphi \lor \psi \in \mathbb{SC}(\varrho)$ then $\varphi \in \mathbb{SC}(\varrho)$ and $\psi \in \mathbb{SC}(\varrho)$
- If $\langle \mathfrak{a} \rangle \varphi \in \mathbb{SC}(\varrho)$ or $[\mathfrak{a}] \varphi \in \mathbb{SC}(\varrho)$ then $\varphi \in \mathbb{SC}(\varrho)$
- If $\mu x \varphi \in S\mathbb{C}(\varrho)$ then $\varphi(\bot) \in S\mathbb{C}(\varrho)$ and $\varphi(\mu x \varphi) \in S\mathbb{C}(\varrho)$
- If $v^{\alpha} \mathbf{x} \varphi \in \mathbb{SC}(\varrho)$ then $v^{\beta} \mathbf{x} \varphi \in \mathbb{SC}(\varrho)$ and $\varphi(v^{\beta} \mathbf{x} \varphi) \in \mathbb{SC}(\varrho) \ \forall \beta < \alpha$.

Proposition

Let $\rho \in L_{\mu}$. There is an ordering \sqsubseteq such that

● $(\mathbb{SC}(\varrho), \sqsubseteq)$ is a WQO.

2 If $\varphi \sqsubseteq \psi$ then $rank(\varphi) \le rank(\psi)$

 $If \varphi \sqsubseteq \psi \ then \|\psi\| \subseteq \|\varphi\|$

(Q,\sqsubseteq) is a well-quasi order (WQO) if

- \sqsubseteq is a reflexive and transitive relation on Q, and
- every infinite seq. q_1, q_2, \ldots has an increasing pair $q_i \sqsubseteq q_j$ with i < j.

Definition (Smyth powerdomain)

For sets $X, Y \subseteq Q$ define $X \sqsubseteq Y$ iff $\forall \varphi \in Y \exists \psi \in X$ s.t. $\psi \sqsubseteq \varphi$.

Proposition

 $(\mathcal{P}(\mathbb{SC}(\varrho)), \sqsubseteq)$ is a wqo.

Finitising/regularising the canonical model

- Along every infinite path in t_{∞} there exists uR^*v s.t. $u \sqsubseteq v$
- Delete the path from *v* onward and connect its predecessor to *u*
- Check truth lemma obtains

Theorem

 $K_{\mu}(\omega)$ is sound and complete for Kripke frames.

For converse:

• A refinement of \sqsubseteq :

 $u \sqsubseteq_* v$ iff v = f(u) for an order-preserving $f: On \rightarrow On$.

• For sets:

 $X \sqsubseteq_* Y$ iff $f(X)^{\uparrow} = Y^{\uparrow}$ for some increasing, order-preserving f

Theorem

 $K_{\mu}(\omega^{\omega})$ is sound and complete for symmetric frames.

$$\frac{\Gamma[\varphi(\nu^{\alpha} \mathbf{x} \varphi)] \quad \text{for all } \alpha < \kappa}{\Gamma[\nu \mathbf{x} \varphi]} \nu_{\kappa}$$

- v_{ω} is sound over arbitrary frames.
- v_{ω} is not sound over symmetric frames:

$$\rho = [\bar{\mathfrak{a}}] \perp \text{ and } \varphi(x) = (\rho \land \mu y \langle \mathfrak{a} \rangle (y \lor x)) \lor \langle \bar{\mathfrak{a}} \rangle (x \land \neg \rho)$$

 $\rho \to v^n x \, \varphi$ holds in all infinite models, but $\rho \to v^\omega x \, \varphi$ does not.

- v_{α} is unsound for each $\alpha < \omega^2$, and unsound for each $\alpha < \omega^{\omega}$ over trees.
- $v_{\omega^{\omega}}$ is sound over symmetric frames.

- Generalisation to guarded fixed point logic
- Irade-off between soundness and completeness
- Open: Is Koz + con complete for symmetric frames?
- **9** Potential applications of the wqo \sqsubseteq to other open problems in μ -calculus