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Abstract

1 Introduction

2 Hierarchical Modules: A Minimal Calculus

Disclaimer: may be outdated, the next section is actively worked on.

Abstract syntax.

s ::= module x s∗ module definition
| ref x+ module reference

x simple name
q ::= x+ qualified name

α, β ::= s∗ module content
Γ,∆ ::= α∗ scope

A concrete syntax for statements could be the Agda module syntax, i. e., module x where s∗

for module x s∗, and module = q for ref q.

Sequences of type ∗ may be empty whereas + stands for non-empty sequences.
We write ε for the empty sequence and use a dot or raised dot for concatenation.
We silently cast elements to singleton sequences, e. g., we write x for x.ε.

Judgements.

Γ 3 q Scope Γ declares name q
Γ ` q Scope Γ declares name q (disambiguated)
Γ ` α Module content α is well-scoped in Γ
` Γ Scope Γ is well-formed
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Γ 3 q

here
Γ · α ·module x β 3 x

there
Γ · α 3 q

Γ · α · s 3 q

into
β 3 q

Γ · α ·module x β 3 x.q
parent

Γ 3 q
Γ · α 3 q

The judgement Γ 3 q is a decidable set, its inhabitants are paths to the definition
site of a name. Γ 3 q may have more than one inhabitant, meaning that name
q would be ambiguous. We can disambiguate by always taking the closest
declaration as the definition of a name.

Γ ` q (implies Γ 3 q).

here
Γ · α ·module x β ` x

there
Γ · α ` q s 63 q

Γ · α · s ` q

into
β ` q

Γ · α ·module x β ` x.q
parent

Γ ` q α 63 q
Γ · α ` q

Γ ` q is a proposition, i. e., contains at most one inhabitant. This inhabitant,
when it exists, may be the considered the resolution of name q in Γ, and it is
the equivalent of a de Bruijn index in lambda calculus.

Lemma 1 (Unambiguity of resolved names). If y, z : (Γ ` q) then y = z.

Proof. By induction on y, z : (Γ ` q). For a representative case, consider
y = into y′ and z = there z′. Assuming the last declaration in Γ is s =
module x β, this means that y′ : (β ` q), but also s 63 q, implied by z. However,
into y′ : (s ` q), which is impossible, as it implies s 3 q.

Well-scopedness of statement (lists): propositions Γ ` s and Γ ` α .

Γ ` q
Γ ` ref q

Γ ⊥ x Γ ` β
Γ ` module x β Γ ` ε

Γ ` α Γ · α ` s
Γ ` α · s

Declaring a new name x involves checking for name clashes via judgement Γ ⊥ x.
We can have Γ ⊥ x vacuously true without introducing ambiguity, but this might
permit unwanted shadowing. For instance, content module x α·module x β ·ref x
may be ruled out since it introduces the same name x on the same level twice.
The reference x is still unambiguous as we resolve it to the last definition of x,
however, this is likely to confuse programmers working in a language with such
shadowing. In contrast, module x (module x ε) which declares a parent x with a
child named x, is less controversial, since the shadowing is on different levels. It
is very common that local definitions may share global definitions, for instance.
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To disallow shadowing on the same level, we define proposition Γ ⊥ x as fol-

lows, using auxiliary proposition α ⊥ x and s ⊥ x .

ε ⊥ x
α ⊥ x

Γ · α ⊥ x
α ⊥ x s ⊥ x

α · s ⊥ x ref q ⊥ x
x 6= x′

module x′ β ⊥ x

Note that for Γ · α ⊥ x, we only check the last content block α, which is on
the same level as the to-be-defined name x. However, then we need to check all
statements within that block α.

Well-formedness of scopes ` Γ.

` ε
` Γ Γ ` α
` Γ · α

3 Hierarchical Modules: A Minimal Calculus
With Aliases

Disclaimer: cut-and-paste from previous section, repetitive.

Abstract syntax.

s ::= module x s∗ module definition
| alias x q module alias

x simple name
q ::= x+ qualified name

α, β ::= s∗ module content
Γ,∆ ::= α∗ scope

A concrete syntax for statements could be the Agda module syntax, i. e., module x where s∗

for module x s∗, and module x = q for alias x q.

Another interpretation would be a file system with folders only. Then module x s∗

defines a folder with subfolders s∗, and alias x q is a symbolic link to q named x.
However, file systems usually allow arbitrary recursion, e. g., we can have fold-
ers A and B where A contains a link to B and vice versa. This would yield an
infinite path A.B.A.B.... In contrast, we are aiming at well-founded structures,
where pathes are finite and aliases can in principle be expanded.

Sequences of type ∗ may be empty whereas + stands for non-empty sequences.
We write ε for the empty sequence and use a dot or raised dot for concatenation.
We silently cast elements to singleton sequences, e. g., we write x for x.ε. The

name x defined in statement s is def s , thus, def(module x β) = def(alias x q) =
x.
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Judgements.

Γ 3 q Scope Γ declares name q
Γ ` q Scope Γ declares name q (disambiguated)
Γ ` α Module content α is well-scoped in Γ
` Γ Scope Γ is well-formed

Γ 3 q

here
Γ · α ·module x β 3 x

there
Γ · α 3 q

Γ · α · s 3 q
parent

Γ 3 q
Γ · α 3 q

into
β 3 q

Γ · α ·module x β 3 x.q
follow

Γ · α 3 q′.q
Γ · α · alias x q′ 3 x.q

The judgement Γ 3 q is a decidable set, its inhabitants are paths to the definition
site of a name.

To resolve a qualified name x.q matching an alias q, Γ · alias x q′ 3 x.q, the
intuitive procedure would be to look up the content α of the aliased module
q′, and then resolve q′ in α. However, the decidability would be less trivial;
for termination, we would have to argue that α is structurally smaller than Γ.
While this is easy to see, it still would be more laborious to formalize: we would
need a relation that maps a name to its content (if any), define a smaller-than
relation on scopes, prove its well-foundedness, and prove that in scope Γ, the
retrieved content α is always smaller than Γ. Our follow rule instead expands
the alias on the fly, and continues with the expanded name.

For fixed Γ and q, the set Γ 3 q may have more than one inhabitant, meaning
that name q would be ambiguous. We can disambiguate by always taking the
closest declaration as the definition of a name.

Γ ` q (implies Γ 3 q).

here
Γ · α ·module x β ` x

there
Γ · α ` q s 63 q

Γ · α · s ` q
parent

Γ ` q α 63 q
Γ · α ` q

into
β ` q

Γ · α ·module x β ` x.q
follow

Γ · α ` q′.q
Γ · α · alias x q′ ` x.q

Γ ` q is a proposition, i. e., contains at most one inhabitant. This inhabitant,
when it exists, may be the considered the resolution of name q in Γ, and it is
the equivalent of a de Bruijn index in lambda calculus.

Lemma 2 (Unambiguity of resolved names). If y, z : (Γ ` q) then y = z.

Proof. By induction on y, z : (Γ ` q). For a representative case, consider
y = into y′ and z = there z′. Assuming the last declaration in Γ is s =
module x β, this means that y′ : (β ` q), but also s 63 q, implied by z. However,
into y′ : (s ` q), which is impossible, as it implies s 3 q.

4



Well-scopedness of statement (lists): propositions Γ ` s and Γ ` α .

Γ ⊥ x Γ ` q
Γ ` alias x q

Γ ⊥ x Γ ` β
Γ ` module x β Γ ` ε

Γ ` α Γ · α ` s
Γ ` α · s

Declaring a new name x involves checking for name clashes via judgement Γ ⊥ x.
We can have Γ ⊥ x vacuously true without introducing ambiguity, but this might
permit unwanted shadowing. For instance, content module x α · module x β ·
alias y x may be ruled out since it introduces the same name x on the same level
twice. The reference x is still unambiguous as we resolve it to the last definition
of x, however, this is likely to confuse programmers working in a language with
such shadowing. In contrast, module x (module x ε) which declares a parent x
with a child named x, is less controversial, since the shadowing is on different
levels. It is very common that local definitions may share global definitions, for
instance.

To disallow shadowing on the same level, we define proposition Γ ⊥ x as fol-
lows:

ε ⊥ x
α 6 ` x

Γ · α ⊥ x

Note that for Γ · α ⊥ x, we only check the last content block α, which is on the
same level as the to-be-defined name x. (However, we then check all statements
within that block α.)

Well-formedness of scopes ` Γ.

` ε
` Γ Γ ` α
` Γ · α

4 Opening Modules

Module systems often feature statements that let us include the contents of one
module in another. In Agda, this is the open statement.

s ::= open q import content of module q

In the most basic form, where open q imports the whole content of module q
into the current scope, open can be realized analogously to alias:

open
Γ 3 q′.q

Γ · open q′ 3 q
open

Γ ` q′.q
Γ · open q′ ` q

Γ ` q
Γ ` open q

In fact, open is just an alias with an empty name. We might consider aliases
that define qualified names, including the empty name.

s ::= alias xs q import content of module q under extra qualification xs
xs ::= x∗ qualification prefix

5



Then open q = alias ε q.

Setting def(alias xs q) = xs updates the here rule. The follow rule is virtually
unchanged, just generalized from x to xs.

follow
Γ 3 q′.q

Γ · alias xs q′ 3 xs.q
follow

Γ ` q′.q
Γ · alias xs q′ ` xs.q

It is a bit unclear though what the shadowing rules for aliases xs should be.

The simulation of open via a generalized alias can be reversed: we can encode
alias x q as module x (open q). Similarily, a generalized alias x1 . . . xn q where
n ≥ 0 can be encoded by module x1 (. . .module xn (open q)). It seems thus that
open is more primitive than alias, and we can drop alias from the core module
calculus.

4.1 Ambiguity

The names brought into scope by open might clash with names already in scope.
Thus with open, the judgement Γ ` q is no longer a proposition in general.
However, whenever we use a name q, we require it to be non-ambiguous.

4.2 Import restriction

It is very common that imports can be specified precisely, i. e., we may only
import certain identifiers from a module. Agda and Haskell have import direc-
tives for selecting only certain identifiers (Agda keyword using) or selecting all
but certain identifiers (Agda and Haskell keyword hiding). Agda also allows
renaming of identifiers. These directives can be subsumed under a renaming
map ρ that maps simple names to simple names. The imported symbols are
the domain of ρ, their names are given by the range of ρ. The map should be
injective, i. e., two different names should not be mapped to the same name.
It need not necessarily be functional, i. e., nothing speaks against importing a
name twice under different names.1 It might thus be more elegant to consider
ρ as a map from names defined by the import to their origin. Thus, its range
consists of the imported symbols, and its domain gives their new names.

s ::= open q ρ import content, as given by ρ, of module q

1Agda forbids duplicate imports of the same symbol (even when under different name) in
a single open statement. As a consequence ρ, can be stored as a finite map from imported
symbols to their new name. One may want to argue in favor of Agda that importing the
same symbol twice (while under different names) is non-sensical and could be errorneous and
unintended by the user. Agda does allow repetitive import of the same symbol in separate
open statements, though. One may want to argue further that this way, the user states more
explicitely that they want to import the same symbol twice. However, one may argue just
the other way round: a second open statement with the same explicit import is given in error,
and stating the duplicate import twice in the same open statement emphasizes the intent of
the user.
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When trying to resolve a qualified name x.xs in open q ρ, we subject x to the
renaming ρ.

open
Γ 3 q.ρ(x).xs

Γ · open q ρ 3 x.xs
open

Γ ` q.ρ(x).xs

Γ · open q ρ ` x.xs

Γ ` q ∀x : rng ρ. Γ ` q.x
Γ ` open q ρ

An open statement is well-formed if it does not try to import non-existing sym-
bols. In Agda-2.6.0, a violation of this sanity condition is not a hard error, it
only produces a warning.

5 Discussion

6 Related Work
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