Hierarchical Modules in Agda — Scoping Rules

Andreas Abel

22 August 2019, revised 14 December 2019

1 Preliminaries

A programming language is both a mathematical object and a means of commu-
nication involving human beings. Thus, the design of programming languages
cannot only focus on logical, semantic and efficiency aspects, but needs to take
psychological dimensions into account, as well as human culture and experience,
in particular in the field of software engineering.

In the design of scoping rules we have to follow the intuitive approach of humans
to names and aim for the prevention of human misunderstandings and errors.

2 Pure Module Calculus

The Agda language has hierarchical modules which are referred to by non-empty
lists of names, the last of those being the name of the module itself and the rest
the names of its ancestors, i.e., enclosing modules. By just studying a fragment
of the module language we can already formulate most of the principles of scope,
ambiguity, and shadowing of names.

The grammar of the pure module calculus is given by the following BNF-style
rules.

d € Decl -- declaration (statement)
1= a 'module' x 'where' d* -- module definition
| 'open' q a -- Import from q
X € Name -- simple name
g € QName -- qualified name (non-empty list)
ri= Xt -- separator: '.'
a € Access -- exported by 'open'?
1= 'private' -- not exported
| 'public' -- exported

The access modifier a defaults to public in module definitions, and to private
in imports. In Agda’s concrete syntax, access modifiers are only present when
diverging from the default.

Module references g such as in the open statement are always relative to the
current point of view.

A module is populated by two actions: the definition of a new module z with
content m of private and public definitions, or the private or public import of
names z with meanings » from a module ¢q. Definitions and imports may overlap,
thus, £ may become ambiguous. The value m of a module can thus be defined
as a finite map from simple names z to a set containing all denotations u of x
with access status a and origin 0. The set of triples (0,a,u) shall be called a
NameSet.

The value of a module is relative to a signature, which is a finite map from ab-
solute names u to their contents m. For our purposes, one global such signature
Y is sufficient which is extended whenever a new module is fully defined.

u € AName -- absolute name (unique)
0 € Origin -- origin of a binding
1= 'def! -- defined in this module
| ‘imp' -- 1mported from a module
NameSet = Set (Origin x Access x AName) -- (ambiguous) denotation
m € ModuleContent = Name » NameSet -- module value (content)
Y € Sig = AName » ModuleContent -- global signature

An import open ¢ a adds the public content of ¢ with accessibility a to the
current module.

2.1 Ambiguity and clashes

It is useful to allow ambiguous names. While such names cannot be referenced,
they may exist due to imports introducing overlap. For example:

module Top where
module M where
module 0 where
module P where
module N where
module 0 where
module Q where
open M
open N
open P
open Q

Both M and N define 0, thus opening both M and N introduces an ambiguous name
0 with denotations Top.M.0 and Top.N.0. However, this should not eagerly raise
an error message; we may not care about 0. We can still reference P imported
from M and Q imported from N without ambiguity.

An attempt to reference an ambiguous name will raise an error which we call
here AmbiguousName.

However, wild ambiguity, i.e., only denying the reference of ambiguous names,
is not good enough for a robust software development process. In the following,
we investigate some principles of sane ambiguity.

2.1.1 Names exported by a module may not be ambiguous

Ambiguity is a convenience for imports, allowing the omission of explicit import
lists. Ezporting an ambiguous name is pointless, as it can never be referenced.
Thus, ambiguous exports should be ruled out by the scope checker.

Principle 1. A name can only have one public denotation.

Thus, a wellformed NameSet contains at most a single triple of the form
(0,public,u).

When checking the definition module x where ds of a new public module, we
raise exception PublicConflict if x already has a public denotation in the current
module. Likewise, this error is raised during open q public if any of the exported
names of q already has a public denotation in the current module.

Private module definitions and imports are unaffected by this principle.

2.1.2 Names cannot be defined twice in a module

However, ambiguity should not be introduced in the absence of any imports,
even not for private identifiers.

Principle 2. A name can only have a single definition in a module.

Thus, we may not define the same name x twice via module x where. .., regard-
less of its accessibility. It may be a bit surprising that even a private definition
cannot be shadowed by a public definition. But to the human eye, having two
definitions of the same name in the same context is confusing. Also, since they
have the same absolute name, those names cannot be refered to sensibly in
a unique way, unless we let the accessiblity modifier be part of the name —
complications we spare ourselves.

Formally, a wellformed NameSet contains at most a single triple of the form
(def,a,u).

When checking a definition [private] module x where... we raise the error
DuplicateDefinition if x already has a defined denotation in the current module.

2.1.3 Reasonable permutability

The two principles we have seen so far do not contradict the following guarantee:

Principle 3. In a well-formed module that has only ezternal imports,
shuffling the statements never introduces a PublicConflict or Du-
plicateDefinition error.

Restricting to the import from external modules is essential, internal references
may change with permutation of the statements.

Principle 3 allows us to rearrange statements within sensible restrictions, e.g,
we can always swap the following two statments

open M
private module N where ds

if the content of ds is independent from the content of M.

Slightly debatable is the permission to shadow a public import via a private
definition:

module M where
module L where
module N where
module 0 where
open L public
private module N where

Module M still exports N with content 0 even though inside M, name N has become
ambiguous. The permission is in the spirit of Principle 3 to guarantee a certain
order independence of wellformedness. The above code is allowed since there is
no good reason to reject the code below:

module M where
private module N where
module L where
module N where
module O where
open L public

2.1.4 Shadowing of definitions in parent modules

Current Agda (2.6.0) does not allow defining names that are already in scope.
In contrast, our principle 2 only rules out shadowing definitions of the current
module.

Principle 4. Definitions in parent modules may be shadowed.

This is the topic of Agda enhancement request #3801. Principle 4 is utilized by
many of the examples presented so far.

2.1.5 Remark: accessibility in relation to export lists

In Agda, accessiblity information is attached to names introduced into a module.
This is similar to accessibility modifiers in classes in Java-like languages or in
ML signatures. Other languages, like Haskell, use export lists instead. Export
lists have the advantage to gather all exports in one place, whereas in Agda
without tool support, it is not always easy to see what a module exports. One
has to traverse the DAG given by the open _ public statements. However, with
respect to ambiguity, the Agda approach is more permissive. There, we can
export ambiguous names als long they have only one public denotation. The
disambiguation happens at introduction time. Export lists can only contain non-
ambiguous references, of course. Haskell does have a remedy for this, though:
qualified exports.

2.2 Formal specification
Let us specify the evaluation rules for declarations d via pseudo-code which
operates on a state consisting of the following data:

1. the global signature Y, a heap mapping unique names u to their content
m, and

2. the context I, a stack of unfinished modules represented by pairs (z,m) of
names z and current module content m.

(The state can be managed via a state monad which we call ScopeM.)
Service functions concerning the signature X are:

e m « getModule u retrieves the contents m of the module designated by
pointer u.

e U « allocModule g m allocates a new module with absolute name q and
content m and returns its uid u (pointer into the heap).

Service functions of the stack I" are, beyond
e push (x,m) and (x,m) « pop
two functions to unzip the stack into a list of names and a list of contents:

e g « getCurrentModuleName extracts the sequence of module names x from
the stack to get a hierachical module name q.

e [« cxt returns the module contents of the whole stack, as a list with the
top of the stack first. This is the context in which we resolve names.

https://github.com/agda/agda/issues/3801

More complex services will be defined from these primitive services below.

The main procedure of the scope checker is checkDecl d which checks d for
well-formedness in the current context and modifies the context according to d.

checkDecl (a 'module' x 'where' ds) = do
newModule x
for d € ds
checkDecl d
u « closeModule
addContent { x » ('def',a,u) }

checkDecl ('open' q a) = do
m <« lookupModuleContent q
addContent { x » ('imp',a,u) | x » (_,"'public',u) € m }

The bracketing newModule / closeModule has a straightforward definition:

newModule x = push (x, @)

closeModule = do

q « getCurrentModuleName
(_, m) < pop

u « allocModule g m
return u

The function addContent introduces new denotations into the current module,
which is the top of the stack. The addition may introduce ambiguity violating
principles 1 and 2; thus, we check for such conflicts.

addContent m2 = do

(x, mi) « pop

letm=m u m

if 3Ix,ur#u2. { x » (_,'public',uz), x » (_,'public',uz) } € m
raise PublicConflict

if Ix,uizuz. { x » ('def', ,u1), x » ('def', ,uz) } cm
raise DuplicateDefinition

push (x, m)

Finally, m « lookupModuleContent q resolves reference q and returns its value m.
The reference might be undefined or ambiguous; then we raise NotInScope or
AmbiguousName, respectively.

The name g might resolve in the current module or any of its parents. Thus we
need to work through the whole context (stack) I'. A naive procedure would first
look for q in the current module (top of the stack), and when catching NotInScope
continue recursively with the remaining modules in the stack. However, this
would succeed for the following example:

module Top where

module M where
module N where
module P where
module O where
module M where
open M.N

While M.N is not defined in the current module 0, it is defined in its parent
module Top, thus, the open statement succeeds. However, this procedure sug-
gest a different semantics of modules: maps from qualified names q to module
contents, rather than maps from simple names x. In essence, this blends the
contents of the current module and its parents together, where child content
shadows parent content. The open statement would lose its compositionality;
the following example does not succeed:

module Top where
module M where
module N where
module P where
module O where
module M where
open M
open N

That open M.N should succeed but not open M followed by open N feels problem-
atic. One would naturally expect that M has a submodule N which one can bring
into scope by opening M.

The correct resolution of q should go through the stack, but commit to one stack
element m as soon as the head of q can be resolved in m. The most direct imple-
mentation uses a failure continuation which is first set to look in the remaining
stack and then reset to throw a NotInScope error:

lookupModuleContent q = do

[« cxt
loop I
where

err = raise NotInScope

loop [1 err
loop (m:ms) = lookFor g m (loop ms)

lookFor (x:xs) m continuation = do
case { u | x» (, ,u) €Em} of
@ - continuation
{u} - if null xs then return u else do
m' <« getModule u
lookFor xs m' err -- discards continuation!

else - raise AmbiguousName

The third argument of lookFor is the continuation that is only invoked should
already the head x of g be unbound in m. Initially, continuation is set to loop ms
that will search through the remaining modules ms, but after successful location
of x in m, the continuation is reset to throw a NotInScope error.

(The skilled functional programmer will spot that loop is nothing but foldr
(LookFor q) err.)

A Haskell implementation of the scope checker presented here is available on
github.

2.3 Related Work

Ulf Norell [1] has described the design of module system for Agda, and its
informal semantics, in 2006. At that time, Agda 2 was in the prototyping phase.
In contrast, the present work is a reconstruction of scope checking given the
current implementation in Agda 2.6.0 and some of the envisioned modifications,
e.g., issue #3801.

There are two essential differences to Norell’s conception [1]:

1. Norell requires names to be unambiguous always. The move towards am-
biguous names happened later to improve the user experience when deal-
ing with imports. Further, Agda was extended by ambiguous constructors
(and later projections), that can be resolved by the type checker.

2. Norell does not use a signature (heap) to store fully defined modules.
Rather, closing a module merges its contents into the parent module. As
a consequence, module contents give meaning to qualified names ¢, rather
than simple names z as in our semantics.

Concerning 2., we discussed that this semantics makes open less compositional
in our setting. In present Agda 2.6.0 (and, presumably, Norell’s setting), this is
however not a problem, since shadowing definitions of parent modules, as pro-
posed in issue #3801, is ruled out there. It is not clear yet whether the current
semantics of modules can nicely integrate shadowing of parent definitions.

3 References

[1] Ulf Norell, A Module System for Agda, slides for talk at CHIT-CHAT 2006,
Nijmegen, NL, 20 December 2006.

https://github.com/andreasabel/agda-scope/tree/master/pure
https://github.com/andreasabel/agda-scope/tree/master/pure
https://github.com/agda/agda/issues/3801
https://github.com/agda/agda/issues/3801
http://www.cse.chalmers.se/~ulfn/talks/modules-061220.pdf

