
Equational Reasoning about Formal Languages in

Coalgebraic Style

Andreas Abel

Department of Computer Science and Engineering, Gothenburg University

Abstract

Formal languages and automata are a foundational topic of computer sci-
ence, with many practical applications such as compiler construction, textual
search, model checking, and decidability of certain logics. Automata are an
instance of transition systems which have the structure of a coalgebra, and
coalgebraic and coinductive reasoning tools such as simulations, bisimula-
tions, and up-to techniques have been successfully employed to study formal
languages.

In this paper, we show how routine reasoning about formal languages
can be carried out with just the coinductive notion of equality of languages
aka bisimilarity. We formalize a coinductive type of languages and the coin-
ductive type family of strong bisimilarity of languages in the proof assistant
Agda using sized types. The sized typing enables us to establish algebraic
properties of language operations through coinductive proofs of bisimilarity
by equational reasoning. In particular, after verifying that formal languages
form a Kleene algebra, the laws of the Kleene algebra are su�cient to prove
correctness of the usual constructions on automata.

Keywords: Automaton, coalgebra, coinduction, copattern,
formal language, sized types, type theory.
2010 MSC: 03B15, 68N18, 68Q45, 68Q70

cbnd This paper is published under a CC-BY-NC-ND license.

It is recommended to print this article in color.

1. Introduction

Formal languages and automata are a foundational topic of computer sci-
ence, with many practical applications such as compiler construction, textual

Preprint submitted to JLAMP April 10, 2024



search, model checking, and decidability of certain logics. While the theory
of formal languages and automata goes back to the 1960s, its connection to
the coalgebras of category theory is more recent. This coalgebraic formula-
tion suggests that coinduction should be central for reasoning about formal
languages and automata. In particular, to show that two automata recognize
the same language, one can �nd a bisimulation between these automata and
then use coinduction in the form of the theorem of Knaster and Tarski (1955)
for the greatest �xed point. However, coming up with a suitable bisimula-
tion is so far an act of creativity and has not been automated, although
remedies like parameterized coinduction (Hur et al., 2013) have been sug-
gested for a smoother experience of formal coinductive reasoning. Further,
a set of standard strategies to �nd a bisimulation have become known as
coinduction-up-to techniques (Pous and Sangiorgi, 2012).

In this article, we demonstrate that a generalization of primitive coinduc-
tion to well-founded coinduction as both a de�nition principle and a proof
principle lets us carry through a substantial part of basic automata theory
with just equational reasoning over coinductive equality (bisimilarity). Tech-
nically, we rely on a formulation of coinduction with sized types (Hughes
et al., 1996; Amadio and Coupet-Grimal, 1998; Barthe et al., 2004; Abel,
2008; Sacchini, 2013; Abel and Pientka, 2016) in the context of Martin-Löf
Type Theory (1975). This enables us to de�ne the Kleene algebra opera-
tions of formal languages elegantly via their Brzozowski derivatives (1964).
Further, we can de�ne coinductive language equality in a way that gives us
the ability to prove theorems by coinduction and equation chains. In partic-
ular, it allows us to apply the coinductive hypothesis under the proof term
for transitivity. The latter is not possible in weaker formulations of coin-
duction such as the Calculus of (Co)inductive Constructions underlying the
Coq (2018) proof assistant, which makes use of an untyped guardedness check
(Coquand, 1994). As an alternative to sized types, well-founded coinduction
could probably be based on ordered families of equivalences (Matthews, 1999;
Gianantonio and Miculan, 2002) or ultrametric spaces. A type theory uti-
lizing these approaches is emerging (Bizjak et al., 2016), but has not seen a
mature implementation yet.

Agda (2018) is currently the only type-theoretic proof assistant with sup-
port for sized types. Albeit still experimental, Agda's sized types let us
formalize decidable languages and automata elegantly through de�nition by
copattern matching (Abel et al., 2013). All the de�nitions, theorems, and
proofs of this paper have been extracted from Agda code via an Agda to

2



LaTeX translation and are, thus, guaranteed to be correct (assuming the
consistency of Agda itself).

This article does not present any new or surprising results about formal
languages or automata but is solely concerned about the techniques for formal
de�nition and proof. It should, thus, be seen as a tutorial. It has been
inspired by Rutten's tutorial on coalgebraic techniques for formal languages
(1998) and Traytel's recent formalizations in Isabelle (2016). Traytel reports
that Isabelle is being extended by friendly coinductive de�nitions that bring
part of the reasoning power of sized types, possibly su�cient to mimic the
reasoning style employed in this article.

Overview. In Section 2 we brie�y recapitulate the bits and pieces of Type
Theory and Agda relevant for this article. In Section 3 we de�ne decidable
languages as in�nite tries and some operations on them in the style of Brzo-
zowski derivatives. Subsequently, in Section 4 we prove the Kleene algebra
laws for these operations. The �nal technical section, 5, is devoted to the
corresponding constructions on automata and their correctness.

2. Preliminaries: Type Theory and Agda

The de�nitions and theorems of this article are formulated in Dependent
Type Theory à la Martin-Löf (1975), in particular, in the Agda (2018) lan-
guage. Agda is an implementation of Type Theory with several extensions;
we will most notably make use of sized types (Hughes et al., 1996; Abel and
Pientka, 2016) to express coinductive types and de�nitions by coinduction.

On the one hand, Agda is a dependently-typed purely functional pro-
gramming language, and on the other hand, thanks to the Curry-Howard
correspondence, a proof assistant for constructive logic. In the following, we
will brie�y introduce the syntax of Agda by example. The experienced Agda
user can safely skip the remainder of this section.

2.1. Agda as a dependently-typed functional language

The core features of Agda are inductive families (Dybjer, 1994) and func-
tions de�ned by pattern matching. A very simple inductive family is the
enumeration type Bool with two constructors true and false.

3



data Bool : Set where
true : Bool
false : Bool

Bool itself has type Set, which is a universe or a type of types, but not all
types, to avoid vicious cycles. For instance Set itself does not have type Set,
but inhabits the next universe Set1. Boolean negation can be de�ned by
simple pattern matching.

not : Bool � Bool
not true = false
not false = true

Agda also supports Unicode and in�x and mix�x operators. For example,
we can de�ne Boolean disjunction like this:

_∨_ : (a b : Bool) � Bool
true ∨ b = true
false ∨ b = b

The notation (a b : Bool) → Bool is short for (a : Bool)(b : Bool) → Bool
or (a : Bool) → (b : Bool) → Bool, which is the syntax for dependent function
types. In this case, there is no actual dependency, since the bound variables
a and b are not subsequently used in the type.

Data types can be parameterized over other typesA. For instanceMaybeA
embeds an arbitrary type A via just and extends it by a new value nothing.

data Maybe (A : Set) : Set where
just : A � Maybe A
nothing : Maybe A

Data types can be recursive, such as List i A parameterized by a size i
and a type A. The size i : Size acts as an upper bound on the length of the
list. The special size ∞ : Size means unbounded length.

4



data List (i : Size) (A : Set) : Set where
[] : List i A
_::_ : {j : Size< i} (x : A) (xs : List j A) � List i A

A list can be empty (constructor [ ]); then any size i is an upper bound on
its length. Or, the list is nonempty (e. g., x :: xs); in this case, if j is an
upper bound on the length of its tail xs and j < i, then i is an upper bound
on the length of x :: xs . Strictly speaking, the constructor _::_ takes three
arguments: j : Size< i and x : A and xs : List Aj, but the �rst argument j is
in {braces} and thus declared as hidden. The user does not have to write it,
and its value will be inferred by Agda if possible. Note that j occurs in the
type of xs , thus, this is a proper dependency.

It is possible to supply a hidden argument to a function by enclosing it
in braces. In case of the in�x operator _::_, we have to fall back to pre�x
style _::_ {j}x xs though.

The types Size and Size< i are Agda primitives that are used for termi-
nation checking. For instance, consider the mapping function on lists. Note
that the notation ∀{i AB} → . . . is short for {i : _}{A : _}{B : _} → . . .
and becomes {i : Size}{A : Set}{B : Set} → . . . after type reconstruction.

map : ∀{i A B} � (A � B) � List i A � List i B
map f [] = []
map f (x :: xs) = f x :: map f xs

Function map f takes a list of size i as input and returns a list with the same
upper bound. We say map is size preserving. As map is de�ned recursively,
termination is not obvious. Agda infers from pattern x :: xs : List i A, which
is short for pattern _::_ {j}x xs : List i A with a pattern variable j intro-
duced by Agda, that xs : List j A and j : Size< i. Consequently, the recursive
call map f xs�which internally expands to map {j} f xs� is justi�ed, by the
descent in size j < i. An analogous argument assures termination of foldr,
the iteration principle for lists, which replaces in a list the [ ] constructor by
n : B and any _::_ constructor by c : A → B → B.

foldr : ∀{i} {A B : Set} � (A � B � B) � B � List i A � B
foldr c n [] = n
foldr c n (x :: xs) = c x (foldr c n xs)

5



As an application of foldr and map, we de�ne any p xs which is true if p x is
true for any element x of xs .

any : ∀{i A} � (A � Bool) � List i A � Bool
any p xs = foldr _∨_ false (map p xs)

Finally, data types with a single constructor can alternatively be de-
�ned as record types. For instance, the Cartesian product A×B can be
implemented as record type with the projections fst : A×B → A and
snd : A×B → B and constructor _,_ : A → B → A×B.

record _Ö_ (A B : Set) : Set where
constructor _,_
�eld fst : A

snd : B

Agda allows the projections also on the left hand sides of de�nitions by
pattern matching. In the following, we de�ne for a pair p : A×B its reversal
swap p : B×A by giving its value for all valid projections. This de�nition
form is called de�nition by copattern matching, since we are not matching on
a function argument, but on the possible observations on the function result
(Abel et al., 2013).

swap : ∀{A B} � A Ö B � B Ö A
fst (swap p) = snd p
snd (swap p) = fst p

This is, of course, just one possible implementation of swap, which we chose
to exemplify copattern matching. A simple clause swap (a , b) = (b , a) would
have done the job, but copattern matching will be the de�nition principle of
choice for coinductive structures in Section 3.

2.2. Agda as a proof assistant

Martin-Löf Type Theory allows us to reason about programs via the
propositions-as-types paradigm. A proposition is seen as the type of its
proofs, for instance, the absurd proposition ⊥ (Falsehood) has no proof, and
the trivial proposition ⊤ (Truth) has a proof with no further content.

6



In Agda, ⊥ is modeled as a data type with no constructors. Given a proof
p : ⊥, we can prove any proposition A (populate any type A) by matching
on p. As there are no constructors of ⊥, there is nothing further to show,
indicated in Agda by the absurd pattern () which matches anything of empty
type.

data ⊥ : Set where

⊥-elim : {A : Set} (p : ⊥) � A
⊥-elim ()

Truth ⊤ is modeled as record type with no �elds. There is no information
to extract from a proof of ⊤, a proof is simply an empty record.

record ⊤ : Set where

triv : ⊤
triv = record {}

Implication A → B coincides with the ordinary function space, and uni-
versal quanti�cation ∀x → A with the dependent function space (x : _) → A.

We can de�ne our own propositions, predicates, and relations as inductive
(or coinductive, see Section 4.1) families. The prime example is propositional
equality x ≡ y of objects x, y : A, which is de�ned as a data type with a
hidden parameter A : Set, a visible parameter x : A, and an index y : A. The
only constructor refl�which has no arguments��xes y to be identical to x,
thus, witnesses that x and y are identical modulo Agda's internal notion of
equality (which is called de�nitional equality).

data _≡_ {A : Set} (x : A) : A � Set where
re� : x ≡ x

Since it is de�ned inductively, propositional equality is the smallest relation
on A that is re�exive.

Proofs of equality can be used by pattern matching. For instance, we can
prove symmetry of equality, i. e., x ≡ y implies y ≡ x by pattern matching
on the proof of x ≡ y.

sym : ∀{A} {x y : A} � x ≡ y � y ≡ x

7



sym {A} {x} {.x} re� = re�

The only matching constructor refl forces y to be identical to x. This is
indicated in Agda by the inaccessible pattern .x which means that y has
been instantiated by the term x. As a consequence, the goal becomes x ≡ x
which is simply proved by refl.

In a similar fashion, we prove transitivity of propositional equality. By
matching both the proofs of x ≡ y and y ≡ z against refl, variables y and z
become instantiated to x, and again, the goal becomes simply x ≡ x.

trans : ∀{A} {x y z : A} � x ≡ y � y ≡ z � x ≡ z
trans re� re� = re�

In general, inductively de�ned propositions are inhabited by proof trees
in the same way that inductive types are inhabited by trees. As an example,
consider the proposition Any i P xs which states that predicate P : A → Set
holds on some element x : A of (unbounded) list xs : List ∞A. Parameter
i : Size is an upper bound on the tree height of a proof p : Any i P xs of this
proposition.

data Any (i : Size) {A} (P : A � Set) : List ∞ A � Set where
here : ∀{x xs} (p : P x ) � Any i P (x :: xs)
there : ∀{x xs} {j : Size< i} (p : Any j P xs) � Any i P (x :: xs)

Constructor here establishes the proposition for a non-empty list x :: xs given
a proof p : Px that predicate P holds on the head x of the list. The resulting
proof tree is a leaf, and any size i is an upper bound on the height of this
derivation. Constructor there takes a derivation p : Any j P xs stating that P
holds on some element of list xs , and builds a proof of Any i P (x :: xs). The
tree height of p, ordinal j, is necessarily strictly smaller than i.

Proofs in Type Theory naturally contain the necessary information to
construct witnesses for existential propositions such as Any. In this case, a
proof takes the form theren (here p) where n is the index of witnessing element
x that satis�es P , and p : P x is the evidence for the latter fact.

This concludes the short tutorial on Type Theory and Agda. In the next
section, we introduce coinductive types for the example of in�nitely deep
trees. In the following, we will sometimes write List A for unbounded lists
List ∞A.

8



3. Decidable Languages, Coinductively

Given an alphabet A, a word as : List A is a list of characters. A language
over A is usually described as set of words, and a decidable language as such
a set whose characteristic function is computable. We will work in the setting
of Type Theory (Martin-Löf, 1975) where each function is computable, thus,
we can identify a decidable languages with its characteristic function of type
List A → Bool where Bool is the two-element data type with constructors
true and false.

A set of words with decidable membership can also be represented as a
trie. For our purposes, a trie is an A-branching tree whose nodes are labeled
by Booleans. Any word as is a path into the tree selecting a subtree. The
root label of that subtree indicates the status of the word as . Label true
means the word is member of the set, label false means it is not a member.
Even though each word is �nite, the language might be in�nite, thus, tries
have in�nite depth in general. In fact, the tries we use have only in�nite
branches, regardless of whether we represent a �nite language or not.

For instance, let us consider the language E of even natural numbers in
binary representation forbidding leading zeros. Writing 0 as a and 1 as b,
our language contains the words a, ba, baa, bba, baaa, baba, etc. Given the
alphabet A = {a, b}, the language can be concisely described by the regular
expression a+ b(a+ b)∗a.

Figure 1 shows an initial part of the trie of language E, where double-
circled nodes denote membership of the word leading to that node, and single-
circled ones non-membership. Observe that the subtree ba has only accepting
nodes along its left-most path a∗, witnessing that ba∗ is a sublanguage of E
(representing 2n for n ≥ 1). Thus, a �nite trie would be insu�cient to
represent E.

Generalizing Bool to B, the connection between the type T of A-branching
B-labeled tries and the type ListA → B can also be derived by calculating
type isomorphisms (Hinze, 2000; Altenkirch, 2001):

ListA → B ∼= (1 + A× ListA) → B
∼= (1 → B)× ((A× ListA) → B)
∼= B × (A → (ListA → B))

This means that ListA → B is a solution of the recursive equation

X ∼= B × (A → X)

9



· · ·a 33
b
++

a 33
b
++

· · ·a 33
b
++

a
77

b

''

· · ·a 33
b
++

a 33
b
++

· · ·a 33
b
++

a

@@

b

��

· · ·a 33
b
++

a 33
b
++

· · ·a 33
b
++

a
77

b

''

· · ·a 33
b
++

a 33
b
++

· · ·a 33
b
++ · · ·

Figure 1: Trie of E

which also describes the decomposition of a trie X into its root label of type
B and its A-indexed family of subtrees A → X. Tries T are the greatest
solution of this equation and we write T = νX.B × (A → X). We will later
establish the isomorphism between T and ListA → B more precisely.

3.1. Coinductive tries in Agda

In Agda, we represent the coinductive type νX.Bool× (A → X) of tries
as a coinductive record type Lang with �elds ν : Bool for the root label and
δ : A → Lang for the family of subtrees. If �eld ν is true then the language
contains the empty word and is sometimes called a nullable language, hence
the �eld name ν.

The name δ is inspired by its role as Brzozowski derivative. Given a
decidable language f : ListA → Bool, its a-derivative δ f a : ListA → Bool is
de�ned as (δ f a)(as) = f (a :: as). This means that δ f a accepts the words
of f that start with a, minus this �rst letter. In terms of tries t, we obtain
the derivative δ t a simply by following the a-labeled edge from the root, thus,
the derivation function is identical with the �eld δ.

There is one �nal twist to arrive at the Agda de�nition: In order to
facilitate corecursive de�nitions of tries that are certi�ed by Agda's produc-

10



tivity checker, we equip the type of tries Lang i with an index i : Size. Index
i denotes an ordinal ≤ ω corresponding to the de�nedness depth of a trie
t : Lang i. Ultimately, we are interested only in fully de�ned tries t : Lang∞,
where ∞ is syntax for ordinal ω. This means we can query t's nodes at
arbitrary depth. For a �nite de�nedness level i we can only inspect nodes up
to depth i. In particular t : Lang 0 allows us to look only at the root label
ν t, its subtrees via δ t a are unde�ned and Agda's type checker will object
to such an expression.

If for an arbitrary ordinal i, a trie t : Lang i can be de�ned by reference
to tries of type Lang j for j < i, written j : Size< i, then t can be assigned
type ∀{i} → Lang i. We say t is de�ned by well-founded recursion on ordinal
i, which is our principle of corecursive de�nition.

record Lang i : Set where
coinductive
�eld ν : Bool

δ : ∀{j : Size< i} � A � Lang j

As typing of the projections from tries we get

ν : ∀{i : Size} → Lang i → Bool
δ : ∀{i : Size} → Lang i → ∀{j : Size< i} → A → Lang j

with hidden size arguments which will, if type checking succeeds, be �gured
out by Agda's uni�er and size constraint solver. When taking the derivative
δ {i} t {j} a we are free to choose any j strictly below i. This expresses that if
t was only de�ned up to depth i, then its a-subtree is less de�ned; and we are
allowed to waste information and choose a smaller j than necessary. Wasting
is �ne since Lang i is a subtype of Lang j whenever i ≥ j, as we can always
use a more de�ned value t : Lang i when a value of Lang j is demanded. The
antitone subtyping chain

Lang∞ ≤ . . . ≤ Lang (↑ i) ≤ Lang i ≤ . . . Lang 0

can be justi�ed by the equation Lang i ∼= Bool×
⋂

j<i(A → Lang j).
The isomorphism Lang i ∼= (List i A → Bool) is witnessed by the following

two functions. The �rst, l ∋ as , checks membership of word as in language
l represented as a trie. The empty word [ ] is in the language if ν l, i. e., if
the language is nullable. The composite word a :: as is accepted by l if as is
accepted by the derivative δ l a.

11



_∋_ : ∀{i} � Lang i � List i A � Bool
l ∋ [] = ν l
l ∋ a :: as = δ l a ∋ as

Visually spoken, l ∋ as returns the root label of the subtree selected by path
as .

The second function constructs a trie representation trie f from the func-
tional representation f of a decidable language. The trie is constructed core-
cursively by copattern matching (Abel et al., 2013).

trie : ∀{i} ( f : List i A � Bool) � Lang i
ν (trie f ) = f []
δ (trie f ) a = trie (λ as � f (a :: as))

The root label ν (trie f) is determined by whether f accepts the empty
word [ ]. The a-derivative δ (trie f) a is constructed by corecursion on the
a-derivative of f . The justi�cation of the recursive call to trie is apparent
once we make the hidden size arguments visible:

δ {i} (trie {i} f) {j} a = trie {j} (λas → f (a :: as))

By typing of the projection δ, we have j : Size< i, thus, the de�nition of
trie {i} only rests on trie {j} with a smaller size index. Well-founded induction
on sizes guarantees that the equation system has a unique solution.

The corecursive de�nition by copattern matching is sometimes likened
to di�erential equations (Hansen et al., 2017). In the de�nition of trie, the
second equation (δ) is the di�erential equation, and the �rst equation (ν)
determines the initial value.

3.2. Constructing decidable languages by coiteration

In the following, we implement some standard constructions on formal
languages by copattern matching. These operations will allow us to compute
the trie of any regular expression. Throughout the rest of this article, we

assume a type A of characters with a decidable equality ⌊ a ?
= b ⌋ : Bool for

a, b : A.
The empty language ∅ is the trie where each node label is false. Naturally,

each subtree of ∅ is again ∅.

12



∅ : ∀{i} � Lang i
ν ∅ = false
δ ∅ x = ∅

The language ε accepting only the empty word has root label true but all
other labels are false. Hence, any derivative is the empty language.

ε : ∀{i} � Lang i
ν ε = true
δ ε x = ∅

The language char a accepting the one-letter word a :: [ ] is not nullable, its
a-derivative is ε and all other derivatives are ∅.

char : ∀{i} (a : A) � Lang i

ν (char a) = false

δ (char a) x = if ⌊ a
?
= x ⌋ then ε else ∅

We obtain the language complement compl l of a language l by �ipping all
labels. This is accomplished by recursing (lazily) over the whole tree.

compl : ∀{i} (l : Lang i) � Lang i
ν (compl l) = not (ν l)
δ (compl l) x = compl (δ l x )

Complement compl is a special instance of mapping a function pointwise over
all tree labels.

For the union k∪ l of two languages l and k, we overlay the two tries and
perform the Boolean disjunction operation on corresponding node labels.

_∪_ : ∀{i} (k l : Lang i) � Lang i
ν (k ∪ l) = ν k ∨ ν l
δ (k ∪ l) x = δ k x ∪ δ l x

The intersection could be de�ned analogously, using Boolean conjunction.
Both operations are instance of a general zipWith-function that applies a

13



binary operation pointwise to a pair of tries.
All recursive de�nitions of tries so far have followed a speci�c pattern:

in the right hand sides of the recursive equations, the recursive call was
outermost, i. e., the equation had the form δ (g y⃗)x = g t⃗ for some variables
x, y⃗ and some terms t⃗. With the non-recursive equation being ν (g y⃗) = o,
this form is an instance of the commutative diagram for terminal coalgebras
and sometimes called coiteration (Geuvers, 1992).

For a functor F : Set → Set, an F -coalgebra is a pair (S, t) with S : Set
and t : S → F S. An F -coalgebra morphism between coalgebras (S1, t1) and
(S2, t2) is a function f : S1 → S2 such that t2 (f s1) is equal to F f (t s1) for
all s1 : S1. An F -coalgebra is terminal if it is the target of a coalgebra mor-
phism from every F -coalgebra. Besides establishing the connection between
coiteration and coalgebras, we will not dwell on coalgebras in this article,
thus, we do not go into more details here.

Here is the diagram for a (Bool×(A → _))-coalgebra (Γ, h) mapping into
the terminal coalgebra (Lang, ⟨ν, δ⟩):

Γ h //

coith

��

Bool× (A → Γ)

id× (coith ◦_)

��
Lang

⟨ν, δ⟩
// Bool× (A → Lang)

With g := coith, the commutative law

⟨ν, δ⟩ ◦ g = id× (g ◦_) ◦ h

can be applied to points y⃗ : Γ to yield

⟨ν, δ⟩(g y⃗) = (id× (g ◦_))(h y⃗).

For our instance, h y⃗ = (o, λx → t⃗) with y⃗:Γ ⊢ o : Bool and y⃗:Γ, x:A ⊢ t :
Lang, thus,

⟨ν, δ⟩(g y⃗) = (o, g ◦ (λx → t⃗)).

This can be split into the two equations

ν (g y⃗) = o

δ (g y⃗)x = g t⃗

14



that form the laws of a function g = coit (λy⃗ → (o, λx → t⃗)) de�ned by
coiteration (modulo some tupling and (un)currying).

The type/context Γ can be interpreted as the set of states of an automa-
ton h with a coupled presentation of the accepting state set Γ → Bool and the
transition function Γ → (A → Γ). Function coith maps a state s : Γ to the
language coith s accepted by h starting from state s. The language construc-
tions discussed at the beginning of this section correspond to constructions of
(possibly in�nite) automata with references to existing automata as oracles.
The reader is invited to con�rm this by expressing the given constructions
through coiteration. Note however, that the state type Γ might involve Lang
and is, thus, not guaranteed to be �nite!

3.3. Constructing decidable languages by well-founded corecursion

To complete the constructions of languages as supported by regular ex-
pressions, we are missing language concatenation and the Kleene star. These
can be constructed by corecursion up-to which can be reduced to primitive
corecursion into a trie with an extended alphabet (Traytel, 2016). However,
using sized types we can naturally de�ne these operations by their derivative
laws, using well-founded recursion on sizes.

Language concatenation k · l is our �rst non-trivial operation on lan-
guages. The intuition (k ∋ as) ∧ (l ∋ bs) =⇒ (k · l) ∋ (as ++ bs) leads to
the speci�cation (k · l) ∋ cs ⇐⇒ ∃n ∈ N. k ∋ (taken cs) ∧ l ∋ (dropn cs).1

However, this speci�cation does not directly suggest a pretty implementation
of k · l (Doczkal et al., 2013).

We can instead try to understand language concatenation as an operation
on the tries k and l. If we think about accepting a word cs in k · l by
following paths in k and l, the following procedure applies: We start by
following branches in k. Whenever we reach an accepting node in k we
may decide that we have reached the boundary between the words as in k
and bs in l that make up the word cs = (as ++ bs) in k · l. Hence, we
start following branches in l. However, since we are not sure we already
reached the boundary, we simultaneously continue to follow branches in k.
At each accepting node in k we spawn o� a run in l. Thus, a trie for k · l
may be constructed by the following operation on all accepting nodes of k:

1We write as ++ bs for the concatenation of lists as and bs; we write taken cs for

the largest pre�x of cs of length ≤ n, and dropn cs for the remainder. Note that cs =
taken cs ++ dropn cs for any n ∈ N.

15



make the node non-accepting but then union the subtree starting here with
l. This transformation is achieved by the following corecursive de�nition of
concatenation:

_·_ : ∀{i} (k l : Lang i) � Lang i
ν (k · l) = ν k ∧ ν l
δ (k · l) x = let k ′l = δ k x · l in if ν k then k ′l ∪ δ l x else k ′l

The concatenation of two languages is nullable i� both are nullable. For the
x-derivative, we follow the x-branch in k via δ k x · l in any case. If the node
is accepting, i. e., ν k is true, we may in addition follow the x-branch in l
via δ l x. As before, the equations for language concatenation correspond to
the derivation laws of regular expressions (Brzozowski, 1964), but we arrived
there by the trie intuition.

The above de�nition is not an instance of coiteration for two reasons:
First, the outermost call is to if_then_else_ rather than the recursive call
k ′l . Even if we consider if_then_else_ to be special (rather than just an
arbitrary Agda function), there is still a recursive call k ′l in the then-branch
which is not at top-level, but under the union-operator. This problem is
usually �xed by de�ning a scheme for corecursion up to union. However,
looking at the involved sizes we can accept the de�nition in the present form
as an instance of well-founded corecursion. Crucial here is the sized typing
of the union

_∪_ : ∀{i}(k l : Lang i) → Lang i

which asserts that the arguments are no deeper analyzed than the de�nedness
depth of the result. If we make all hidden size arguments visible�having to
switch to pre�x operators instead of in�x ones�we can see the propagation
of de�nedness depth levels to the recursive call k ′l .

_·_ : ∀{i} (k l : Lang i) � Lang i

δ (_·_{i} k l) {j} x =
let k ′l : Lang j

k ′l = _·_{j} (δ k {j} x ) l
in if ν k then _∪_{j} k ′l (δ l {j} x ) else k ′l

Since the recursive call happens at smaller index j < i, it is justi�ed. Note
also that in the de�nition of k ′l , last letter, l : Lang i is cast to Lang j which

16



is a valid cast since j < i.
The iteration l∗ of a language l, aka Kleene star, can be informally de-

scribed as �zero or more repetitions of l�. If for some n ≥ 0 we have words
as1, as2, . . . asn ∈ l, then (as1 ++ as2 ++ . . . ++ asn) ∈ l. In terms of tries,
l∗ is obtained from l by making the root accepting and unioning l with any
subtree of l that has an accepting root. Intuitively, this means that at each
accepting node we may �jump back� to the root. The corecursive de�nition

_* : ∀{i} (l : Lang i) � Lang i
ν (l *) = true
δ (l *) x = δ l x · (l *)

relies on the sized typing of concatenation to justify the recursive call.
This concludes our set of language operations de�ned by well-founded

corecursion. These operations allow us to give an executable semantics for
regular expressions (leaving aside e�ciency questions). It may be remarked
that, thanks to sized typing, all the de�nitions are concise and direct coun-
terparts of the derivative laws for regular expressions (Brzozowski, 1964).

4. Proving the Kleene Algebra Laws

In this section, we prove that decidable languages as introduced in Sec-
tion 3 form a Kleene algebra.

4.1. A family of equivalence relations over languages

Equality of tries, sometimes called strong bisimilarity, is de�ned coin-
ductively as follows. Two tries are strongly bisimilar if they have the same
root and corresponding subtries are strongly bisimilar in turn. In Agda, this
amounts to the following coinductive de�nition:

record _∼=<_>∼=_ (l : Lang ∞) i (k : Lang ∞) : Set where
coinductive
�eld ∼=ν : ν l ≡ ν k

∼=δ : ∀{j : Size< i} (a : A) � δ l a ∼=< j >∼= δ k a

Note that we are relating tries l, k : Lang∞ whose de�nedness depth is
unbounded (∞). This means that any subtrie such as δ l a is de�ned and in
turn has type Lang∞.

17



However, the relation itself is indexed by a de�nedness depth i. In fact we
are de�ning a family of types such that l∼=⟨ j ⟩∼= k is a subtype of l∼=⟨ i ⟩∼= k
whenever i ≤ j. The depth is a lower bound on how far the proof of equality of
l and k is constructed. In particular, we can only inspect the derivative ∼=δ p a
of a proof p : l∼=⟨ i ⟩∼= k if i > 0. As for coinductive types like Lang i, the
size index i is just a tool for the corecursive construction of derivations. Ulti-
mately, we are only interested in fully de�ned equality proofs p : l∼=⟨∞ ⟩∼= k.
In particular, our size-index relation is not to be confused with ordered fam-
ilies of equivalences (OFEs) (Gianantonio and Miculan, 2002) l ≡n k which
re�ne the notion of equality itself. There, l ≡0 k would hold always and
l ≡n+1 k would hold if l and k have equal roots and their immediate subtries
are ≡n-related. The di�erence to sized types lies in the base case: l∼=⟨ i ⟩∼= k
is unde�ned for size i = 0, rather than being trivially true. OFEs are a
di�erent approach to justifying corecursive de�nitions.

Each of the coinductive relations forms an equivalence relation, proven
for the whole family by coiteration. For re�exivity, we have to prove that
given a trie l, we can construct a derivation that l is strongly bisimilar to
itself l, up to arbitrary depth i.

∼=re� : ∀{i} {l : Lang ∞} � l ∼=< i >∼= l
∼=ν ∼=re� = re�
∼=δ ∼=re� a = ∼=re�

The proof ∼=re� of l∼=⟨ i ⟩∼= l is constructed lazily. If we are asking for its
�rst component ∼=ν∼=re� we get a proof that the root ν l is identical to itself,
namely refl : ν l ≡ ν l. If we are asking for the a-branch of its second compo-
nent, ∼=δ ∼=re� a at depth j<i, it computes ∼=re� : δ l∼=⟨ j ⟩∼= δ l corecursively.

Symmetry is de�ned in a similar fashion. To compute a proof of k ∼= l up
to depth i, we only need a derivation of l ∼= k up to depth i; thus, the type
of ∼=sym is l∼=⟨ i ⟩∼= k → k∼=⟨ i ⟩∼= l.

∼=sym : ∀{i} {k l : Lang ∞} (p : l ∼=< i >∼= k) � k ∼=< i >∼= l
∼=ν (∼=sym p) = sym (∼=ν p)
∼=δ (∼=sym p) a = ∼=sym (∼=δ p a)

Transitivity is likewise depth preserving. Depth-preservation is crucial to
combine reasoning by transitivity and the coinductive hypothesis in a natural
way, as we will see below.

18



∼=trans : ∀{i} {k l m : Lang ∞}
(p : k ∼=< i >∼= l) (q : l ∼=< i >∼= m) � k ∼=< i >∼= m

∼=ν (∼=trans p q) = trans (∼=ν p) (∼=ν q)
∼=δ (∼=trans p q) a = ∼=trans (∼=δ p a) (∼=δ q a)

Taken together, each _∼=⟨ i ⟩∼=_ is an equivalence relation, and forms a
setoid2 Bis i with carrier Lang∞.

∼=isEquivalence : ∀(i : Size) � IsEquivalence _∼=< i >∼=_
∼=isEquivalence i = record { re� = ∼=re�; sym = ∼=sym; trans = ∼=trans }

Bis : ∀(i : Size) � Setoid _ _
Setoid.Carrier (Bis i) = Lang ∞
Setoid._≈_ (Bis i) = _∼=< i >∼=_
Setoid.isEquivalence (Bis i) = ∼=isEquivalence i

Later, we will use these setoids to reason by equality chains. Equality chains
are not a built-in feature of Agda, but a module of its standard library. An
equality chain allows us to write down equational reasoning in a human-
readable way, and is basically a nice interface to reasoning by transitivity. In
general, it works for any preorder, i. e., any re�exive-transitive relation.

Just for the sake of demonstration, we prove transitivity of bisimilarity
again, using the old transitivity proof in form of an equality chain.

∼=trans ′ : ∀ i (k l m : Lang ∞)
(p : k ∼=< i >∼= l) (q : l ∼=< i >∼= m) � k ∼=< i >∼= m

∼=trans ′ i k l m p q = begin
k ≈< p >
l ≈< q >
m ■ where open EqR (Bis i)

2A setoid is a type with an equivalence relation on its elements. In the Agda standard

library, it is represented as a record with three �elds: Carrier, the type, _≈_, the relation,

and isEquivalence, the proof that _≈_ is an equivalence relation. We use setoids as a

poor man's alternative to quotient types, which are absent in Intensional Martin-Löf Type

Theory and Agda.

19



As a prerequisite, we bring the primitives of equality chains into scope
by opening module EqR (short for EquationalReasoning) instantiated to the
setoid Bis i. A chain then starts with begin followed with the �rst term of
the chain (k). Then follows a justi�cation (p : k∼=⟨ i ⟩∼= l) for equality with
the second term (l). This may repeat for a while, in our case, there is only
another justi�cation (q : l∼=⟨ i ⟩∼=m) and a �nal term (m). The chain closes
with an end-of-proof maker (■).

4.2. Laws of language union

Decidable languages form an idempotent commutative monoid under union.
The individual laws, like associativity, commutativity, idempotency, and unit,
follow from the corresponding laws of the Boolean disjunction, which are
pointwise applied at all the corresponding nodes of the involved tries. In
Agda, these are direct proofs by coiteration.

union-assoc : ∀{i} (k {l m} : Lang ∞) � (k ∪ l) ∪ m ∼=< i >∼= k ∪ (l ∪ m)
∼=ν (union-assoc k) = ∨-assoc (ν k) _ _
∼=δ (union-assoc k) a = union-assoc (δ k a)

union-comm : ∀{i} (l k : Lang ∞) � l ∪ k ∼=< i >∼= k ∪ l
∼=ν (union-comm l k) = ∨-comm (ν l) _
∼=δ (union-comm l k) a = union-comm (δ l a) (δ k a)

union-idem : ∀{i} (l : Lang ∞) � l ∪ l ∼=< i >∼= l
∼=ν (union-idem l) = ∨-idem _
∼=δ (union-idem l) a = union-idem (δ l a)

union-emptyl : ∀{i} {l : Lang ∞} � ∅ ∪ l ∼=< i >∼= l
∼=ν union-emptyl = re�
∼=δ union-emptyl a = union-emptyl

Finally, union preserves equality, which is again proven by coiteration. The
sized typing will be crucial to apply a coinductive hypothesis under union-cong
later.

union-cong : ∀{i}{k k ′ l l ′ : Lang ∞}
(p : k ∼=< i >∼= k ′) (q : l ∼=< i >∼= l ′) � k ∪ l ∼=< i >∼= k ′ ∪ l ′

∼=ν (union-cong p q) = cong2 _∨_ (∼=ν p) (∼=ν q)

20



∼=δ (union-cong p q) a = union-cong (∼=δ p a) (∼=δ q a)

A derived law we require later is that union distributes over itself. Now that
we have established that union ful�lls the laws of an idempotent commutative
monoid, we can use a solver to prove this law automatically by re�ection.

union-union-distr : ∀{i} (k {l m} : Lang ∞) �
(k ∪ l) ∪ m ∼=< i >∼= (k ∪ m) ∪ (l ∪ m)

Concretely, the solver checks that both sides of the equation have the same
set of atoms, by normalizing both sides to the set {k, l,m}. This solver is
implemented in Agda itself, but we will not describe it further here.3

4.3. Laws of language concatenation
In this section, we prove laws of language concatenation k · l. Since it

is de�ned by cases on whether k is nullable, we will make the same case
distinction in most proofs. To this end, we use Agda's with construct, as for
example in:

withExample : (P : Bool � Set) (p : P true) (q : P false) �
{A : Set} (g : A � Bool) (x : A) � P (g x )

withExample P p q g x with g x
... | true = p
... | false = q

It can be roughly seen as a case distinction over g x, but it also abstracts g x
in the goal P (g x) so that we can solve it by p : P true in the �rst clause and
q : P false in the second clause.

Further, we use Agda's rewrite construct, which can be applied on an
equation l ≡ r to rewrite subterms l in a goal to r. For example:

rewriteExample : {A : Set} {P : A � Set} {x : A} (p : P x )
{g : A � A} (e : g x ≡ x ) � P (g x )

rewriteExample p e rewrite e = p

3https://github.com/agda/agda-stdlib/blob/1c78e4e/src/Algebra/

IdempotentCommutativeMonoidSolver.agda implements this solver.

21

https://github.com/agda/agda-stdlib/blob/1c78e4e/src/Algebra/IdempotentCommutativeMonoidSolver.agda
https://github.com/agda/agda-stdlib/blob/1c78e4e/src/Algebra/IdempotentCommutativeMonoidSolver.agda


Here, the goal is changed from P (g x) to P x using equation e, and sub-
sequently solved by p.

As a �rst law of concatenation, we consider distributivity over union, for
instance, k · (l ∪ m) ∼= (k · l) ∪ (k · m). Naturally, we would like to
prove this statement by coinduction. The case for ν follows by the Boolean
distributivity law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In the case for δ, we would
like to reason by the following equality chain. We consider the subcase that
k is nullable, and underline the subterms that have changed from the last
line (unless the whole expression has changed).

δ (k · (l ∪ m)) a ∼= by de�nition

δ k a · (l ∪ m) ∪ δ (l ∪ m) a ∼= by de�nition

δ k a · (l ∪ m) ∪ (δ l a ∪ δ ma) ∼= by coinduction hypothesis

(δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ ma) ∼= by union laws

(δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ ma) ∼= by de�nition

δ (k · l) a ∪ δ (k · m) a ∼= by de�nition

δ (k · l ∪ k · m) a

This proof does not follow the scheme of (primitive) coinduction. The coin-
duction hypothesis is applied under uses of transitivity (for connecting the
equations) and under the congruence law for union. This becomes especially
clear if we fully write out the justi�cations as in the corresponding Agda
proof in Figure 2. However, the continuity of transitivity and union-congl as
witnessed by the sized typing justi�es the use of the coinduction hypothesis.

The other distributivity law is proven by coinduction and case distinction
over the nullability of l and k.

concat-union-distribl : ∀{i} (k {l m} : Lang ∞) �
(k ∪ l) · m ∼=< i >∼= (k · m) ∪ (l · m)

Congruence laws for concatenation follow by coinduction and congruence of
union.

concat-congl : ∀{i} {m l k : Lang ∞}
� l ∼=< i >∼= k

22



concat-union-distribr : ∀{i} (k {l m} : Lang ∞) �
k · (l ∪ m) ∼=< i >∼= (k · l) ∪ (k · m)

∼=ν (concat-union-distribr k) = ∧-∨-distribl (ν k) _ _
∼=δ (concat-union-distribr k) a with ν k

∼=δ (concat-union-distribr k {l} {m}) a | true = begin
δ k a · (l ∪ m) ∪ (δ l a ∪ δ m a)

≈< union-congl (concat-union-distribr (δ k a)) >
(δ k a · l ∪ δ k a · m) ∪ (δ l a ∪ δ m a)

≈< union-swap24 >
(δ k a · l ∪ δ l a) ∪ (δ k a · m ∪ δ m a)

■

where open EqR (Bis _)

∼=δ (concat-union-distribr k) a | false = concat-union-distribr (δ k a)

Figure 2: Concatenation distributes over union.

� l · m ∼=< i >∼= k · m

concat-congr : ∀{i} {m l k : Lang ∞}
� l ∼=< i >∼= k
� m · l ∼=< i >∼= m · k

The coinductive proof of associativity relies on distributivity and congruence
and associativity of union.

concat-assoc : ∀{i} (k {l m} : Lang ∞) � (k · l) · m ∼=< i >∼= k · (l · m)

Finally, the empty language is a zero and the language of the empty word a
unit for language composition:

concat-emptyl : ∀{i} l � ∅ · l ∼=< i >∼= ∅
concat-emptyr : ∀{i} l � l · ∅ ∼=< i >∼= ∅

concat-unitl : ∀{i} l � ε · l ∼=< i >∼= l
concat-unitr : ∀{i} l � l · ε ∼=< i >∼= l

23



4.4. Laws of the Kleene star

The language of the empty word is the iteration of the empty language.

star-empty : ∀{i} � ∅ * ∼=< i >∼= ε

To prove that iteration is idempotent, we �rst prove that concatenation of
iterated languages is idempotent.

star-concat-idem : ∀{i} (l : Lang ∞) � l * · l * ∼=< i >∼= l *
∼=ν (star-concat-idem l) = re�
∼=δ (star-concat-idem l) a = begin

δ l a · l * · l * ∪ δ l a · l *
≈< union-congl (concat-assoc _) >

δ l a · (l * · l *) ∪ δ l a · l *
≈< union-congl (concat-congr (star-concat-idem _)) >

δ l a · l * ∪ δ l a · l *
≈< union-idem _ >

δ l a · l *
■ where open EqR (Bis _)

This lets us prove idempotency of the Kleene star:

star-idem : ∀{i} (l : Lang ∞) � (l *) * ∼=< i >∼= l *
∼=ν (star-idem l) = re�
∼=δ (star-idem l) a = begin
δ l a · l * · (l *) * ≈< concat-congr (star-idem l) >
δ l a · l * · l * ≈< concat-assoc (δ l a) >
δ l a · (l * · l *) ≈< concat-congr (star-concat-idem l) >
δ l a · l *
■ where open EqR (Bis _)

The Kleene star obeys the following recursive equation:

star-rec : ∀{i} (l : Lang ∞) � l * ∼=< i >∼= ε ∪ (l · l *)

Finally, we prove Arden's rule (1961), which would allow us to solve linear
equations over regular expressions.

24



star-from-rec : ∀{i} (k {l m} : Lang ∞)
� ν k ≡ false
� l ∼=< i >∼= k · l ∪ m
� l ∼=< i >∼= k * · m

∼=ν (star-from-rec k n p) with ∼=ν p
... | b rewrite n = b

∼=δ (star-from-rec k {l} {m} n p) a with ∼=δ p a
... | q rewrite n = begin

(δ l a)
≈< q >

δ k a · l ∪ δ m a
≈< union-congl (concat-congr (star-from-rec k {l} {m} n p)) >

(δ k a · (k * · m) ∪ δ m a)
≈< union-congl (∼=sym (concat-assoc (δ k a))) >

(δ k a · k * · m ∪ δ m a)
■ where open EqR (Bis _)

All the proofs about decidable languages in this section were performed
rather mechanically using:

1. coinduction,
2. equality chains,
3. already proven lemmata.

We did not require any up-to techniques or creative insight such as �nding
bisimulation relations to carry out our proofs. Thus, it is likely that after
initiating coinduction, standard �rst-order theorem provers could �ll in the
remaining steps.

5. Constructing Automata

In this section, we show that deterministic automata form a Kleene alge-
bra like decidable languages do. We show how to construct union, concatena-
tion, and Kleene star of automata, in a recapitulation of the classic theory of
formal languages. Our message is that the corresponding correctness proofs
can be carried out by the same means as in the last section: coinduction and
equational reasoning.

25



In our presentation of deterministic automata (DA) we follow Rutten
(1998): A not necessarily �nite automaton over a state set S is given by a
transition function δ : S → A → S and a characteristic function ν : S → Bool
for the set of accepting (or �nal) states. These two functions could also be
bundled as S → Bool × (A → S), making apparent that an automaton
(S : Set, da : DAS) is just a Bool× (A → _)-coalgebra.

record DA (S : Set) : Set where
�eld ν : (s : S ) � Bool

δ : (s : S ) (a : A) � S

νs : ∀{i} (ss : List i S ) � Bool
νs ss = List.any ν ss

δs : ∀{i} (ss : List i S ) (a : A) � List i S
δs ss a = List.map (λ s � δ s a) ss

In anticipation of power automata we lift the coalgebra to lists of states
List i S → Bool×(A → List i S). A list of states is accepting (νs) if it contains
at least one �nal state. And we step (δs) to a new list of states by pointwise
applying the transition function. (Remember that map and any have been
de�ned in Section 2.1.)

The initial state is not contained in the automaton de�nition; each state
s induces a language lang da s accepted by an automaton da, which can be
de�ned by simple coiteration:

lang : ∀{i} {S} (da : DA S ) (s : S ) � Lang i
Lang.ν (lang da s) = DA.ν da s
Lang.δ (lang da s) a = lang da (DA.δ da s a)

For each automaton (S, da) the function lang da : S → Lang∞ is the terminal

26



morphism.

S
⟨DA.ν da, DA.δ da⟩

//

lang da

��

Bool× (A → S)

id× (lang da ◦_)

��
Lang∞

⟨Lang.ν, Lang.δ⟩
// Bool× (A → Lang∞)

5.1. Simple constructions on automata

An automaton for the empty language can be constructed with a single
non-accepting state inhabiting Agda's unit type ⊤.

∅A : DA ⊤
ν ∅A s = false
δ ∅A s a = s • yy

To recognize the language of the empty word, we use two states, accepting
true and non-accepting false : Bool.

εA : DA Bool
ν εA b = b
δ εA b a = false

true // false
��

To accept a the single letter word a, we have three states: an initial state
init, an accepting state acc, and a rejecting error state err.

27



data 3States : Set where
init acc err : 3States

charA : (a : A) � DA 3States
ν (charA a) init = false
ν (charA a) acc = true
ν (charA a) err = false
δ (charA a) init x =

if ⌊ a
?
= x ⌋ then acc else err

δ (charA a) acc x = err
δ (charA a) err x = err

init
a //

¬a
""

acc

��
err
HH

Given an automaton da, we construct the automaton complA da for the
complement language by switching accepting and non-accepting states.

complA : ∀{S} (da : DA S ) � DA S
ν (complA da) s = not (ν da s)
δ (complA da) s a = δ da s a

Given an automaton da1 over state set S1 accepting language ℓ1 and an
automaton da2 over S2 for ℓ2, we can recognize the union ℓ1 ∪ ℓ2 by the
following product automaton da1 ⊕ da2 over state set S1 × S2. A state in
the product automaton is a pair of states (s1, s2), one from each original
automaton. Transitions are done in lock-step, and for acceptance at least
one of the original automata must be in a �nal state.

_⊕_ : ∀{S1 S2} (da1 : DA S1) (da2 : DA S2) � DA (S1 Ö S2)
ν (da1 ⊕ da2) (s1 , s2) = ν da1 s1 ∨ ν da2 s2
δ (da1 ⊕ da2) (s1 , s2) a = δ da1 s1 a , δ da2 s2 a

5.2. Automaton composition for language concatenation

In preparation for automaton constructions for language concatenation
and iteration, we de�ne the power automaton, which allows us to be in a set
of states at the same time. It is actually su�cient to consider �nite sets of
states, which we represent a bit redundantly as lists.

28



powA : ∀{S} (da : DA S ) � DA (List ∞ S )
ν (powA da) ss = νs da ss
δ (powA da) ss a = δs da ss a

If we start the power automaton in state [s1, . . . , sn], the accepted lan-
guage will be the

⋃n
i=1 lang da si. We prove this in two steps: First, if we

start out in no states, the accepted language is empty.

powA-nil : ∀{i S} (da : DA S ) �

lang (powA da) [] ∼=< i >∼= ∅

∼=ν (powA-nil da) = re�
∼=δ (powA-nil da) a = powA-nil da

If we start in the non-empty list s :: ss , we accept the union of the
accepted language of da from s and the accepted language of powA da from
ss .

powA-cons : ∀{i S} (da : DA S ) {s : S} {ss : List ∞ S} �

lang (powA da) (s :: ss) ∼=< i >∼= lang da s ∪ lang (powA da) ss

∼=ν (powA-cons da) = re�
∼=δ (powA-cons da) a = powA-cons da

For language concatenation, given two automata da1 and da2, we will con-
struct a composition automaton composeA da1 s2 da2 such that its accepted
language from state s1 is the language concatenation lang da1 s1 · lang da2 s2.
The key insight is that whenever we reach a �nal state sf in da1, we non-
deterministically jump to the initial state s2 of da2. In some formulations
of non-deterministic automata this would be an ε-transition from sf to s2,
consuming no input. We will instead add transitions from sf to the successor

29



states of s2.

• •

da1 sf

a

bb

b
}}

ε //

a

11

b --

s2

a

==

b
!!

da2

• •

This means for the composition that we are in one state of da1 and in
zero or more states of da2 at the same time. Thus, the type of states is
S1 × List ∞S2 and we consider the power of the second automaton.

composeA : ∀{S1 S2}
(da1 : DA S1) (s2 : S2) (da2 : DA S2) � DA (S1 Ö List ∞ S2)

A state (s1, ss2) of the composition automation is �nal if any of ss2 is
�nal, or if s1 is �nal and the initial state s2 of da2 is also a �nal state. (The
latter means that the second language is nullable, so any word of the �rst
language is contained in the composition.)

ν (composeA da1 s2 da2) (s1 , ss2) =
(ν da1 s1 ∧ ν da2 s2) ∨ νs da2 ss2

To step from state (s1, ss2) we consider two cases. First, if s1 is not �nal,
we simply transition pointwise, from s1 with δ da1, and from each state in
ss2 with δ da2. However, if s1 is �nal, we imagine to be also in the initial
state s2 of da2, thus, we add to this the transition we can make from s2 in
the second automaton.

δ (composeA da1 s2 da2) (s1 , ss2) a =
δ da1 s1 a , δs da2 (if ν da1 s1 then s2 :: ss2 else ss2) a

The composition automaton is a non-trivial construction, thus, it makes

30



sense to look at its correctness proof. We have to generalize the correctness
statement to arbitrary initial states (s1, ss) in the composition automaton.
If ss is not empty, the accepted language of the composition automaton
contains the union of the accepted languages from each state in ss as well.

composeA-gen : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) �
∀ (s1 : S1) (s2 : S2) (ss : List ∞ S2) �

lang (composeA da1 s2 da2) (s1 , ss)
∼=< i >∼=
lang da1 s1 · lang da2 s2 ∪ lang (powA da2) ss

The proof is by coinduction, using lemma powA-cons in case s1 is �nal.

∼=ν (composeA-gen da1 da2 s1 s2 ss) = re�
∼=δ (composeA-gen da1 da2 s1 s2 ss) a with ν da1 s1
... | false = composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 ss a)

... | true = begin

lang (composeA da1 s2 da2)
(δ da1 s1 a , δ da2 s2 a :: δs da2 ss a)

≈< composeA-gen da1 da2 (δ da1 s1 a) s2 (δs da2 (s2 :: ss) a) >

lang da1 (δ da1 s1 a) · lang da2 s2 ∪
lang (powA da2) (δs da2 (s2 :: ss) a)

≈< union-congr (powA-cons da2) >

lang da1 (δ da1 s1 a) · lang da2 s2 ∪
(lang da2 (δ da2 s2 a) ∪ lang (powA da2) (δs da2 ss a))

≈< ∼=sym (union-assoc _) >

(lang da1 (δ da1 s1 a) · lang da2 s2 ∪ lang da2 (δ da2 s2 a))
∪ lang (powA da2) (δs da2 ss a)

■ where open EqR (Bis _)

31



As a corollary for empty ss , we obtain the correctness of automaton
composition:

composeA-correct : ∀{i S1 S2} (da1 : DA S1) (da2 : DA S2) s1 s2 �

lang (composeA da1 s2 da2) (s1 , []) ∼=< i >∼= lang da1 s1 · lang da2 s2

5.3. Automaton construction for language iteration

Finally, from an automaton da accepting language ℓ from state s0 : S, we
construct an automaton starA da for the iterated language ℓ∗. We do this in
two steps:

1. acceptingInitial: Add a new �nal state nothing : MaybeS with the same
successors as s0. State nothing will serve as the new initial state. Its
�nality guarantees that the empty word is accepted.

2. �nalToInitial: Add the successors of s0 to each �nal state. This enables
iteration. At this point, the automaton becomes �non-deterministic�,
i. e., we switch to List ∞ (MaybeS).

•

// nothing

a

11

b
++

s0

a

;;

b

��

da

a

hh

b
uu•

a

PP

b
oo

The �rst step embeds states s : S of da as just s : MaybeS.

acceptingInitial : ∀{S} (s∅ : S ) (da : DA S ) � DA (Maybe S )
ν (acceptingInitial s∅ da) (just s) = ν da s
δ (acceptingInitial s∅ da) (just s) a = just (δ da s a)

It adds the new accepting state nothing : MaybeS with the successors of s0.

ν (acceptingInitial s∅ da) nothing = true
δ (acceptingInitial s∅ da) nothing a = just (δ da s∅ a)

32



The second step constructs the power automaton and adds transitions from
the �nal states to the successors of the initial state.

�nalToInitial : ∀{S} (da : DA (Maybe S )) � DA (List ∞ (Maybe S ))
ν (�nalToInitial da) ss = νs da ss
δ (�nalToInitial da) ss a =
let ss ′ = δs da ss a
in if νs da ss then δ da nothing a :: ss ′ else ss ′

Composing these steps leads to the automaton for language iteration.

starA : ∀{S} (s∅ : S ) (da : DA S ) � DA (List ∞ (Maybe S ))
starA s∅ da = �nalToInitial (acceptingInitial s∅ da)

To verify the construction, we �rst note some properties of the �rst step.
For one, embedding the states of da via just : S → MaybeS does not change
the accepted language.

acceptingInitial-just : ∀{i S} (s∅ : S ) (da : DA S ) {s : S} �

lang (acceptingInitial s∅ da) (just s) ∼=< i >∼= lang da s

This lemma is proven directly by coinduction. Further, the language accepted
by the new state nothing : MaybeS is the language accepted by s0 enriched
with the empty word.

acceptingInitial-nothing : ∀{i S} (s∅ : S ) (da : DA S ) �

lang (acceptingInitial s∅ da) nothing ∼=< i >∼= ε ∪ lang da s∅

The proof by coinduction uses acceptingInitial-just.
The main lemma characterizes the language accepted by starA s0 da from

an arbitrary state ss .

starA-lemma : ∀{i S} (da : DA S ) (s∅ : S ) (ss : List ∞ (Maybe S )) �

lang (starA s∅ da) ss
∼=< i >∼=

33



lang (powA (acceptingInitial s∅ da)) ss · (lang da s∅) *

The proof by coinduction uses powA-cons, acceptingInitial-just, and some
laws of decidable languages as proven in Section 3.

Finally, we prove correctness of the starA-construction: If we start in the
new initial state nothing (only), the recognized language is the Kleene star
of the language recognized by da from s0.

starA-correct : ∀{i S} (da : DA S ) (s∅ : S ) �

lang (starA s∅ da) (nothing :: []) ∼=< i >∼= (lang da s∅) *

The proof is direct, instantiating the starA-lemma, using correctness of
the powA-construction, and lemma acceptingInitial-nothing.

6. Conclusions and Too Much Related Work

In this article, we have demonstrated that well-founded coinduction re-
alized by sized types and copattern matching allows for elegant de�nitions
of decidable languages, language operations, and correctness proofs for au-
tomata constructions. All de�nitions and proofs could be carried out formally
in the Agda proof assistant, using standard tools like equation chains and a
simple monoid solver.

Beyond the material presented in this article, we have also formalized
regular expressions and their equivalence to regular (Chomsky type 3) gram-
mars, using the same proof techniques.

Being one of the oldest topics of computer science and taught to every
student, there is an abundance of related work we are not able to review here.
We just wish to mention a recent and comprehensive Coq formalization of
classic automata theory by Doczkal et al. (2013). In contrast to us, they
properly restrict to �nite automata, using the support for �nite types given
by the SSRe�ect library (Gonthier and Mahboubi, 2010).

Acknowledgments. The author acknowledges support from Vetenskapsrådet
(Swedish Research Council) through project 621-2014-4864/E0486401 Termi-
nation Certi�cation for Dependently-Typed Programs and Proofs via Re�ne-
ment Types and from the COST Action CA15123 European research network
on types for programming and veri�cation (EUTYPES). He is grateful to

34



Ichiro Hasuo and the program committee of the IFIP WG 1.3 International
Workshop on Coalgebraic Methods in Computer Science, CMCS 2016, for an
invitation to present his �ndings at this workshop.

References

References

Abel, A., 2008. Semi-continuous sized types and termination. Logical Meth-
ods in Computer Science 4, 1�33. URL: http://dx.doi.org/10.2168/
LMCS-4(2:3)2008. CSL'06 special issue.

Abel, A., Pientka, B., 2016. Well-founded recursion with copatterns and
sized types. Journal of Functional Programming 26, 61. URL: http:
//dx.doi.org/10.1017/S0956796816000022. ICFP 2013 special issue.

Abel, A., Pientka, B., Thibodeau, D., Setzer, A., 2013. Copatterns: Pro-
gramming in�nite structures by observations, in: Giacobazzi and Cousot
(2013). pp. 27�38. pp. 27�38. URL: http://dl.acm.org/citation.cfm?
id=2429069.

AgdaTeam, 2018. The Agda Wiki. URL: http://wiki.portal.chalmers.
se/agda.

Altenkirch, T., 2001. Representations of �rst order function types as terminal
coalgebras, in: Abramsky, S. (Ed.), Typed Lambda Calculi and Applica-
tions, 5th International Conference, TLCA 2001, Krakow, Poland, May
2-5, 2001, Proceedings, Springer. pp. 8�21. URL: http://dx.doi.org/
10.1007/3-540-45413-6_5.

Amadio, R.M., Coupet-Grimal, S., 1998. Analysis of a guard condition in
type theory (extended abstract)., in: Nivat, M. (Ed.), Foundations of
Software Science and Computation Structure, First International Con-
ference, FoSSaCS'98, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS'98, Lisbon, Portugal,
March 28 - April 4, 1998, Proceedings, Springer. pp. 48�62. URL:
http://dx.doi.org/10.1007/BFb0053541.

Arden, D.N., 1961. Delayed-logic and �nite-state machines, in: 2nd An-
nual Symposium on Switching Circuit Theory and Logical Design, Detroit,

35

http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.2168/LMCS-4(2:3)2008
http://dx.doi.org/10.1017/S0956796816000022
http://dx.doi.org/10.1017/S0956796816000022
http://dl.acm.org/citation.cfm?id=2429069
http://dl.acm.org/citation.cfm?id=2429069
http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
http://dx.doi.org/10.1007/3-540-45413-6_5
http://dx.doi.org/10.1007/3-540-45413-6_5
http://dx.doi.org/10.1007/BFb0053541


Michigan, USA, October 17-20, 1961, IEEE Computer Society Press. pp.
133�151. URL: http://dx.doi.org/10.1109/FOCS.1961.13.

Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T., 2004.
Type-based termination of recursive de�nitions. Mathematical Structures
in Computer Science 14, 97�141. URL: http://dx.doi.org/10.1017/
S0960129503004122.

Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.,
2016. Guarded dependent type theory with coinductive types, in: Ja-
cobs, B., Löding, C. (Eds.), Foundations of Software Science and Com-
putation Structures - 19th International Conference, FoSSaCS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, Springer. pp. 20�35. URL: http://dx.doi.org/10.1007/
978-3-662-49630-5_2.

Brzozowski, J.A., 1964. Derivatives of regular expressions. Journal of the
Association of Computing Machinery 11, 481�494. URL: http://doi.
acm.org/10.1145/321239.321249.

Coquand, T., 1994. In�nite objects in type theory, in: Barendregt, H.,
Nipkow, T. (Eds.), Types for Proofs and Programs, International Work-
shop TYPES'93, Nijmegen, The Netherlands, May 24-28, 1993, Se-
lected Papers, Springer. pp. 62�78. URL: http://dx.doi.org/10.1007/
3-540-58085-9_72.

Doczkal, C., Kaiser, J., Smolka, G., 2013. A constructive theory of regular
languages in Coq, in: Gonthier, G., Norrish, M. (Eds.), Certi�ed Programs
and Proofs - Third International Conference, CPP 2013, Melbourne, VIC,
Australia, December 11-13, 2013, Proceedings, Springer. pp. 82�97. URL:
http://dx.doi.org/10.1007/978-3-319-03545-1_6.

Dybjer, P., 1994. Inductive families. Formal Aspects of Computing 6, 440�
465. URL: http://dx.doi.org/10.1007/BF01211308.

Geuvers, H., 1992. Inductive and coinductive types with iteration and recur-
sion, in: Nordström, B., Pettersson, K., Plotkin, G. (Eds.), Proceedings
of the 1992 Workshop on Types for Proofs and Programs, Båstad, Swe-
den, June 1992, pp. 193�217. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.35.9758.

36

http://dx.doi.org/10.1109/FOCS.1961.13
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1017/S0960129503004122
http://dx.doi.org/10.1007/978-3-662-49630-5_2
http://dx.doi.org/10.1007/978-3-662-49630-5_2
http://doi.acm.org/10.1145/321239.321249
http://doi.acm.org/10.1145/321239.321249
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-319-03545-1_6
http://dx.doi.org/10.1007/BF01211308
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.9758
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.9758


Giacobazzi, R., Cousot, R. (Eds.), 2013. The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL'13,
Rome, Italy, January 23 - 25, 2013, ACM Press. URL: http://dl.acm.
org/citation.cfm?id=2429069.

Gianantonio, P.D., Miculan, M., 2002. A unifying approach to recursive and
co-recursive de�nitions, in: Geuvers, H., Wiedijk, F. (Eds.), Types for
Proofs and Programs, Second International Workshop, TYPES 2002, Berg
en Dal, The Netherlands, April 24-28, 2002, Selected Papers, Springer. pp.
148�161. URL: https://doi.org/10.1007/3-540-39185-1_9.

Gonthier, G., Mahboubi, A., 2010. An introduction to small scale re�ection
in Coq. Journal of Formalized Reasoning 3, 95�152. URL: http://dx.
doi.org/10.6092/issn.1972-5787/1979.

Hansen, H.H., Kupke, C., Rutten, J., 2017. Stream di�erential equations:
Speci�cation formats and solution methods. Logical Methods in Computer
Science 13. URL: https://doi.org/10.23638/LMCS-13(1:3)2017.

Hinze, R., 2000. Generalizing generalized tries. Journal of Func-
tional Programming 10, 327�351. URL: https://doi.org/10.1017/

S0956796800003713.

Hughes, J., Pareto, L., Sabry, A., 1996. Proving the correctness of reac-
tive systems using sized types, in: Boehm, H.J., Steele Jr., G.L. (Eds.),
Conference Record of POPL'96: The 23rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Papers Presented at the
Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996,
ACM Press. pp. 410�423. URL: http://doi.acm.org/10.1145/237721.
240882.

Hur, C., Neis, G., Dreyer, D., Vafeiadis, V., 2013. The power of parameteriza-
tion in coinductive proof, in: Giacobazzi and Cousot (2013). pp. 193�206.
pp. 193�206. URL: http://doi.acm.org/10.1145/2429069.2429093.

INRIA, 2018. The Coq Proof Assistant Reference Manual. version 8.8 ed.
INRIA. URL: http://coq.inria.fr/.

Martin-Löf, P., 1975. An intuitionistic theory of types: Predicative part,
in: Rose, H.E., Shepherdson, J.C. (Eds.), Logic Colloquium `73, North-
Holland. pp. 73�118.

37

http://dl.acm.org/citation.cfm?id=2429069
http://dl.acm.org/citation.cfm?id=2429069
https://doi.org/10.1007/3-540-39185-1_9
http://dx.doi.org/10.6092/issn.1972-5787/1979
http://dx.doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1017/S0956796800003713
http://doi.acm.org/10.1145/237721.240882
http://doi.acm.org/10.1145/237721.240882
http://doi.acm.org/10.1145/2429069.2429093
http://coq.inria.fr/


Matthews, J., 1999. Recursive function de�nition over coinductive types,
in: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin-Mohring, C., Théry,
L. (Eds.), Theorem Proving in Higher Order Logics, 12th International
Conference, TPHOLs'99, Nice, France, September, 1999, Proceedings,
Springer. pp. 73�90. URL: https://doi.org/10.1007/3-540-48256-3_
6.

Pous, D., Sangiorgi, D., 2012. Enhancements of the bisimulation proof
method, in: Sangiorgi, D., Rutten, J. (Eds.), Advanced Topics in Bisimu-
lation and Coinduction. Cambridge University Press.

Rutten, J.J.M.M., 1998. Automata and coinduction (an exercise in coalge-
bra), in: Sangiorgi, D., de Simone, R. (Eds.), CONCUR '98: Concurrency
Theory, 9th International Conference, Nice, France, September 8-11, 1998,
Proceedings, Springer. pp. 194�218. URL: http://dx.doi.org/10.1007/
BFb0055624.

Sacchini, J.L., 2013. Type-based productivity of stream de�nitions in the
calculus of constructions, in: 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, IEEE Computer Society Press. pp. 233�242. URL: http:
//dx.doi.org/10.1109/LICS.2013.29.

Tarski, A., 1955. A lattice-theoretical �xpoint theorem and its applications.
Paci�c Journal of Mathematics 5, 285�309.

Traytel, D., 2016. Formal languages, formally and coinductively, in: Kesner,
D., Pientka, B. (Eds.), 1st International Conference on Formal Structures
for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto,
Portugal, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. pp. 31:1�
31:17. URL: http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.31.

38

https://doi.org/10.1007/3-540-48256-3_6
https://doi.org/10.1007/3-540-48256-3_6
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1109/LICS.2013.29
http://dx.doi.org/10.1109/LICS.2013.29
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.31

	Introduction
	Preliminaries: Type Theory and Agda
	Agda as a dependently-typed functional language
	Agda as a proof assistant

	Decidable Languages, Coinductively
	Coinductive tries in Agda
	Constructing decidable languages by coiteration
	Constructing decidable languages by well-founded corecursion

	Proving the Kleene Algebra Laws
	A family of equivalence relations over languages
	Laws of language union
	Laws of language concatenation
	Laws of the Kleene star

	Constructing Automata
	Simple constructions on automata
	Automaton composition for language concatenation
	Automaton construction for language iteration

	Conclusions and Too Much Related Work

